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Abstract

We discuss the geometry induced by pairs of diffusion operators on two states spaces
related by a map from one space to the other. This geometry led us to an intrinsic point
of view on filtering. This will be explained plainly by examples, in local coordinates
and in the metric setting. This article draws largely from the books [11, 13] and aim to
have a comprehensive account of the geometry for a general audience.

1 Introduction

Let p be a differentiable map from a manifold NV to M which intertwines a diffusion
operator B on N with another diffusion operator, .4 on M, thatis (Af) op = B(f o p)
for a given function f from M to R. Suppose that A is elliptic and f is smooth.
It is stated in [13] this intertwining pair of operators determine a unique horizontal
lifting map b from T'M to T'N which is induced by the symbols of A and B and the
image of the lifting map determines a subspace of the tangent space to /N and is called
the associated horizontal tangent space and denoted by H. The condition that 4 is
elliptic can be replaced by cohesiveness, that is, the symbol o4 : T*M — T, M has
constant non-zero rank and A is along the image of 0. If A is of the form, A =
350 LxiLxi + Lxo, it is cohesive if span{X*(z),...,X™(x)} are of constant
rank and contains X°(x). Throughout this paper we assume that A is cohesive.

For simplicity we assume that the 5-diffusion does not explode. The pair of inter-
twining operators induces the splitting of T'N in the case that B is elliptic or the split-
ting of Tp~ 1[I m(c*)] = ker(T,,p) ® H,. Hence a diffusion operator .4 in Hormander
form has a horizontal lift A, operator on IV, through the horizontal lift of the defining
corresponding vector fields. For operators not in Hérmander form an intrinsic defini-
tion of horizontal lift can also be defined by the lift of its symbols and another asso-
ciated operator 54 from the space of differential forms to the space of functions and
such that 6(df) = Af. In this case the diffusion operator B splits and B = A + BV
where BY acts only on the vertical bundle, which leads to computation of the condi-
tional distribution of the B3 diffusion given a A diffusion. We describe this in a number
of special cases.

This work was inspired by an observation for gradient stochastic flows. Let

d.’l?t = X(th) o dBt + Xo(Tt)dt
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be a gradient stochastic differential equations (SDEs). As usual (B,) is an R™ valued
Brownian motion. The bundle map X : R™ x M — T'M is induced by an isometric
embedding map f : M — R"™. Define Y (z) := df(x) : T, M — R™ and

(X(@)e,v) := (e, Y (x)(v)).

Then ker X (z) is the normal bundle ¥ M and [ker X (z)]+ corresponds to the tangential
bundle. It was observed by Itd that the solution is a Brownian motion, that is the
infinitesimal generator of the solutions is 7A It was further developed in [8] that if we
choose an orthonormal basis {e;} of R™ and define the vector fields X;(z) = X (x)(e)
then the SDE now written as

de; = ZXi(xt) o dB} + Xo(xy)dt (1.1)

i=1

and the Itd correction term » VX {(X?) vanishes. In [18] this observation is used
to prove a Bismut type formula for differential forms related to gradient Brownian
flow, in [20] to obtain an effective criterion for strong 1-completeness, and in [19]
to obtain moment estimates for the derivative flow T'¢, of the gradient SDEs. The key
observation was that for each 7 either V X; or X; vanishes and if T'¢;(v) is the derivative
flow for the SDE, T'¢;(v) is in fact the derivative in probability of the solution &;(x) at
2 in the direction v satisfying

Jhd() o) = VXi(ve) 0 dBf + V Xo(vp)dt.
i=1
where //,(0) : T,,M — T,,M denotes the stochastic parallel translation correspond-

ing to the Levi-Civita connection along a path ¢ which is defined almost surely for
almost all continuous paths. Consider the Girsanov transform

vngza Us

Bt—>Bt+/Z o eids

and fot > %elds = Ot %d& Let Z; and ©; be the corresponding
solutions to the above two SDEs then E|v;|?, = E|v;|; G where G/ is the Girsanov
density. It transpires that the transformation does not change (1.1). Since |v:|P =
|vo \PGte“f(’“), where a; is a term only depending on x; not on v, see equation (18) in
[20] E|v,|? = Ee® @) = Ee% @0 In summary the exponential martingale term in the
formula for |v:|P can be considered as the Radon-Nikodym derivative of a new measure
given by a Cameron-Martin transformation on the path space and this Cameron-martin
transformation has no effect on the x-process.

Letting F* = o{&,(x) : 0 < 5 < t}, B{//; 'vs| F*} satisfies [9],
d 1 .
/W= =3/l @RicF (Wt

where Ric, : T, M — T, M is the linear map induced by the Ricci tensor. The process
W, is called damped stochastic parallel translation and this observation allows us to
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give pointwise bounds on the conditional expectation of the derivative flow. Together
with an intertwining formula

dPy(v) = Edf (T'€:(v)),
this gives an intrinsic probabilistic representation for dP; f = Edf(W,), and leads to
VP fl@) < [PV )l o @) (E[Wi] ) (2)

and V| P, f|(x) < |df |1 E|W|(z) which in the case of the Ricci curvature is bounded
below by a positive constant leads to:

|VP,|(x) < e PV )| (x)

and
VP, f|(x) < |df| e "

respectively.
If the Ricci curvature is bounded below by a function p, one has the following
pointwise bound on the derivative of the heat semigroup:

1

IVP|(@) < |P(V )| 1o (x) (Ee*q/2 I ﬂ<ws>d8) .

See [21] for an application, and [6], [22], [7], [24] for interesting work associated with
differentiation of heat semi-groups.

It turns out that the discussion for the gradient SDE are not particular to the gradient
system. Given a cohesive operator the same consideration works provided that the
linear connection, equivalently stochastic parallel transport or horizontal lifting map,
we use is the correct one.

To put the gradient SDE into context we introduce a diffusion generator on GLM,
the general linear frame bundle of M. Let 7} be the partial flow of X; and let X& be
the vector field corresponding to the flow {Tni(u) : u € GLM}. Let

1
B=5) LxoLxe+Lxg.

Then B is over A, the generator of SDE (1.1). The symbol of A is X*(z)X (z) and
likewise there is a similar formulation for o and h,, = XL (w)Y (7r(w)) where Y (z)
is the partial inverse of X (x) and X%(e) = Y X% (e, ;).

Open Question. Let IV, be the Wasserstein distance on the space of probability
measures on M associated to the Riemannian distance function, show that if

Wd(Pt*Ma Pt*l/) < eCth(,U/7 V)

the same inequality holds true for the Riemannian covering space of M. Note that if
this inequality is obtained by an estimate through lower bound on the Ricci curvature,
the same inequality holds on the universal covering space. It would be interesting to
see a direct transfer of the inequality from one space to the other. On the other hand if
eT' is replaced by Ce® we do not expect the same conclusion.
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2 Horizontal lift of vectors and operators

Letp: N — M be a smooth map and B, A intertwining diffusions, that is

B(fop)=Afop

for all smooth function f : M — R, with semi-groups @); and P; respectively. Instead
of intertwining we also say that B3 is over A.

Note that for some authors intertwining may refer to a more general concept for
operators: AD = D(I+k), where k is a constant and D an oprator. For example if A9
is the Laplace-Beltrami operator on differential g-forms over a Riemannian manifold
dA = A'd. The usefulness of such relation comes largely from the relation between
their respective eigenfunctions. For i a smooth positive function, the following relation
(A = 2Lvp)(e™ = eM(A + V) relates to h-transform and links a diffusion operator
A —2Lvyy, with L+V for a suitable potential function V. See [1] for further discussion.

It follows that

0 0
E(Ptfop): a(Ptf)op:A(Ptf)OP:B(Ptfop)-

Since P.f op = fopatt = 0and P, f o psolves % = B, we have the intertwining
relation of semi-groups:

Pifop=Qi(f op). 2.1

The B diffusion u, is seen to satisfy Dynkin’s criterion for p(u;) to be a Markov
process. This intertwining of semi-groups has come up in other context. The relation
VP, = Q.;V, where V is a Markov kernel from N to M, is relates to this one when
a choice of an inverse to p is made. For example take M to be a smooth Riemannian
manifold and N the orthonormal frame bundle. One would fix a frame for each point
in M. Note that the law of the Horizontal Brownian motion has been shown to be the
law of the Brownian motion and independent of the initial frame [8].

The symbol of an operator £ on a manifold M is a map from T*M x T*M — R
such that for f,g: M — R,

1
o (df, dg) = 5 [L(f9) = fLg—gLf].

1 82 o C . . . .
IfL = 2%ij 53,00, + bkm is an elliptic operator on R™ its symbol is (a;;) which
induces a Riemannian metric (g;;) = (aij)_1 on R".
For the intertwining diffusions: p*c® = ¢4, or

B * A
Tup o 0, (Tup)™) = s

if the symbols are considered as linear maps from the cotangent to the tangent spaces.
We stress again that throughout this article we assume that A is cohesive, i.e. o has
constant rank and .4 is along the distribution £ = [ m[c?].

There is a unique horizontal lifting map [13] such that, now with the symbols con-
sidered as linear maps from the cotangent space to the tangent spaces

Bu © 05y = R (Tup)*.
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ol
T:N T,N
hu
(Tup ) Tup
4 f(u)
TowM TpuyM

Let H, to be the image of b, called the horizontal distribution. They consists of
image of differential forms of the form ¢(T’p—) for ¢ € T*M by o®. Note that this
cannot be reduced to the case of A being elliptic because F, may not give rise to a
submanifold of M.

If an operator £ has the Hormander form representation

1 m
£:§;LX_¢LX_f+LXo (2.2)
=

Define X(z) : R™ — T, M by X(z) = 5. X*(x)e; for {e;} an orthonormal basis of
R™. Then I
ok = 5X(m)X(m)* cTEM — T, M.

In the elliptic case, o induces a Riemannian metric and X *(x)¢ = Y (2)¢#.

An operator L is along a distribution S := {S, : © € M}, where each S, is a
subspace of T, M, if L1 = 0 whenever ¢,(S,) = {0}. The horizontal lifts of tangent
vectors induce a horizontal lift of the operator which is denoted as Af. To define a
horizontal lift of a diffusion operator intrinsically, we introduced an operator 6%. If M
is endowed with a Riemannian metric let £ = A be the Laplace-Beltrami operator, this
is d*, the L? adjoint of d the differential operator d. Then d*(f¢) = fd*¢ + vy ()
for ¢ a differential 1-form and f a function, using the Riemannian metric to define the
gradient operator, and A = d*d.

For a general diffusion operator it was shown in [13] that there is a unique linear
operator 6~ : C"™HT*M — C7(M) determined by §°(df) = Lf and 6°(f¢) =
f6%(¢) + df o“ (o). If L has the representation (2.2),

1 m
6F = §ZLX]‘LXJ‘ + txo.

Jj=1

Here ¢ is the interior product, ¢,¢ := ¢(v). The symbol of the operator now plays the
role of the Riemannian metric. For B over A,

SB(p*(df)) = p*(34df).

There are many operators over A and only one of which, AH s horizontal. An oper-
ator L is horizontal (respectively vertical ) if it is along the horizontal or the vertical
distribution. An operator B is vertical if and only if B(f o p) = 0 for all f and B — A#
is a vertical operator.
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The foundation of the noise decomposition theorem in [13] depends on the follow-
ing decomposition of operator 3, when A is cohesive,

B=A" + (B - A% (2.3)
and it can be proven that B — A is a vertical operator.

2.1 In metric form

Note that o gives rise to a positive definite bilinear form on 7% M:

(9,0, = d@) o2 (W(x)))

and this induces an inner product on E,:
(u,v), = (@)™ (W)(w).

For an orthonormal basis {e; } of E,, lete; = (07)7(e;). Then ;a4 (e}) = (o7~ (e;)(es) =
(ej,e;) and hence

(0, 0), = > {e,en)dleniie;) =Y dleii(er).

K2

Likewise the symbol oA" induces an inner product on 7* N with the property that
(poTp,voTp) = {(¢,1) and a metric on H C T'N which is the same as that induced
by b from TM. Note that o8 = A" + oB", where BY is the vertical part of 3, and
Im[eB 1N H = {0}. Let p be an invariant measure for A% and pp; = p.(u) the
pushed forward measure which is an invariant measure for A.

If A is symmetric,

/M (df . dg) pr(dz) = / o(df, dg) pa(da)
1
= 5 [1AUD - 9~ 9 AR st
= —/ fAg dpni().
M

Hence A = —d*d and
6 = —d*

for d* the L? adjoint. Similarly we have an L? adjoint on N and A = —d*d. For a
1-form ¢ on M,

/N (¢oTp, d(gop))dun = / (d*(¢oTp), gop)dun = / (E{d"(¢oT'p)|p}, gop)dun
Hence E{d*(¢oTp)|p} = (d*@)op. Since for u+v € H @ ker[Tp]l, hoTp(u+v) = u,

every differential form v on N induces a form ¢ = 1) o b such that ¢y = ¢(T'w) when
restricted to H, hence E{d*¢)|p} = (d*(¢) o h)) o p.
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2.2 On the Heisenberg group

A Lie group is a group G with a manifold structure such that the group multiplication
G x G — (@ and taking inverse are smooth. Its tangent space at the identity g can
be identified with left invariant vector fields on G, X(a) = T'L,X(e) and we denote
A* the left invariant vector field with value A at the identity. The tangent space 1,G
at a can be identified with g by the derivative T'L, of the left translation map. Let
ay = exp(tA) be the solution flow to the left invariant vector field T'L, A whose value
at 0 is the identity then it is also the flow for the corresponding right invariant vector
field: & = %|t:s expt—94 exps4 = TR, A. Then u; = aexp(tA) is the solution
flow through a.

Consider the Heisenberg group GG whose elements are (z,y, z) € R3 with group
product

1
(@1,y1, 212, Y2, 22) = (T1 + T2, Y1 + Y2, 21 + 22 + §(I1y2 — T2y1).

The Lie bracket operation is [(a,b,¢),(a’,b', )] = (0,0,ab’ — a’b). Note that for
X,Y €g,eXeY = XY H3XYI If A = (q,b,¢), then A* = (a, b, c + 1(zb — ya)).
Consider the projection 7 : G — R? where 7(z, y, 2) = (x, y). Let

1 1
Xl(xvya Z) = (1707 —59)7 X2(1’7% Z) = (Oa 13 §I), X3(:Cay7 Z) = (0707 _1)

be the left invariant vector fields corresponding to the standard basis of g. The vector
spaces Hg .y = span{Xy, Xo} = {(a,b, %(azb — ya))} are of rank 2. They are the

. . . 2 2
horizontal tangent spaces associated to the Laplacian A = (-2 + 6372) on R? and

the left invariant Laplacian B := % Z?Zl Lx,Lx, on G. The vertical tangent space is
{(0,0,¢)} and there is a a horizontal lifting map from T, , )R?:

1
hz,y,2)(a, b) = (a,b, §($b — ya)).

The horizontal lift of A is the hypo-elliptic diffusion operator A = 5% Ly Ly,
and the horizontal lift of a 2-dimensional Brownian motion, the horizontal Brownian
motion, has its third component the Levy area. In fact for almost surely all continuous
path o : [0,T] — M with ¢(0) = 0 we have the horizontal lift curve :

t
5(t) = (Ul(t), a(t), % / (o'®) o do*t) — o (t) o dcrl(t))> )
0

The hypoelliptic semi-group Q; in R? and the heat semigroup P; satisfies Q;(f o
1 1
m) = e2'2 fomand d(e2'2 f) = Qu(df o) o b.

2.3 The local coordinate formulation

Let M be a smooth Riemannian manifold and = : P — M a principal bundle with
group GG acting on the right, of which we are mainly interested in the case when P
is the general linear frame bundle of M or the orthonormal frame bundle with G the
special general linear group or the special orthogonal group of R™. For A € g, the
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Lie algebra of GG, the action of the one parameter group exp(tA) on P induces the
fundamental vector field A* on P. Let VT P be the vertical tangent bundle consisting
of tangent vectors in the kernel of the projection T'7 so the fundamental vector fields
are tangent to the fibres and A — A*(w) is a linear isomorphism from g to V'T;, P. At
each point a complementary space, called the horizontal space, can be assigned in a
right invariant way: HT,, P = (Ry)HT, P.

For the general linear group G'L(n) its Lie algebra is the vector space of all n by n
matrices and the value at a of the left invariant vector field A* is aA. The Lie bracket is
just the matrix commutator, [A, B] = AB — BA. Every finite dimensional Lie group
is homomorphic to a matrix Lie group by the adjoint map. For a € G, the tangent
map to the conjugation ¢ : g € G + aga~! € G induces the adjoint representa-
tion ad(a) : G — GL(g;g). For X € g, $.X*(9) = TL,TR,~1(X(a 'ga)) =
TR,-1X(ga) = (R4-1)+X(g) and is left invariant so ad(a)(A) = TR,-1X*(a). The
Lie bracket of two left invariant vector fields [X*,Y™*] = lim;_.¢ %(exp(tY)*X *—
X*) = limy_,o %(RetY))*X* — X'*) is again a left invariant vector field and this de-
fines a Lie bracket on g by [X,Y]" = [X*,Y*]. The Lie algebra homomorphism
induced by a — ad(a) is denoted by Ad : g — gl(n,R) is given by Adx(Y) =
[X,Y]. A tangent vector at a € G can be represented in a number of different
ways, notably by the curves of the form a exp(tA), exp(tB)a. The Lie algebra ele-
ments are related by B = aAa~! = ad(a)A and %h:oA exp(TB)A™! = ad(A)B
so Aexp(tB)A™! = exp(tad(A)B). The left invariant vector fields provides a paral-
lelism of T'G' and there is a canonical left invariant 1-form on G, wg(T'L4(v)) = Ge(v),
determined by 0(A*) = A.

The collection of left invariant vector fields on TP forms also an algebra and the
map A — A* is a Lie-algebra isomorphism. A horizontal subspace of the tangent
space to the principal bundle TP is determined by the kernel of a connection 1-form
w, which is a g-value differential 1-form on P such that (i) w(A*) = A, forall A € g,
and (2) (Ry)*w = ad(a™Hw(—). Here A* refers to the T'P valued left invariant vector
field. The first condition means that the connection 1-form restricts to an isomorpism
from VTP to g and the second is a compatibility condition following from that the
fundamental vector field corresponding to ad(a~1)A is (R,)+A*. The kernel of w is
right invariant since wqo (TR, V) = (Ry)*w(V) = ad(a) w, (V) forany V € T, P.

In a local chart 7=(U) with U an open set of M and u € 7~ 1(U) — (7(u), $(u))
the chart map where ¢(ua) = ¢(u)a, the connection map satisfies w;,q)(0, B*) = B
for B* the left invariant vector field of G corresponding to B € g and

Wiz,a)(0, B*(@)) = ad(a™")(M,v) + B

where M, : T, M — g is alinear map varying smoothly with x. The trivial connection
for a product manifold M x G would correspond to a choice of M, with M, identically
zero and so the horizontal vectors are of the form (v, 0). The horizontal tangent space
at (z, a) is the linear space generated by

Hip.oTP = {(v,~TR.(Mv)), veT,UacG}.

Given a connection on P, for every differentiable path oy on M, through each frame
ug over o there is a unique u; which projects down to o, on M given by w(i;) = 0.
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In local coordinates u; = (0, g¢), w(ity) = ad(g; w(o, .01, TR, ge) and g~ gy +
ad(g; 1)Mgtdt = 0. If u; is a lift of x4 then u;0g is the horizontal lift of x; through ugg
souy : ™1 (og) — 7 1(0y) is an isomorphism. This formulation works for continuous
paths. Consider the path of continuous paths over M and a Brownian motion measure.
For almost surely all continuous paths o; a horizontal curve exists, as solution to the
stochastic differential equation in Stratnovitch form:

dgy = —M,,(e;)(g¢) o do.

Here (e;) is an orthonormal basis of R™, and the M.(e;)’s are matrices in g and the
solution u; induces a transformation from the fibre at o to the fibre at o;.

2.4 The orthonormal frame bundle

Let N = OM be the orthonormal frame bundle with 7 the natural projection to a
Riemannian manifold M and an right invariant Riemannian metric. Let 4 = A be the
Laplacian on M and B the Laplacian on N. We may choose the Laplacian B to be
of the form %L arLax + %L 1, L, where A; are fundamental vector fields and {H; }
the standard horizontal vector fields. The horizontal lifting map b, is: v € TM +—
(v,0). We mention two Hormander form representation for the horizontal lift. The
first one consists of of horizontal lifts of vector fields that defines .A. The second
one is more canonical. Let {B(e),e € R"} be the standard horizontal vector fields
on OM determined by 6(B(e)) = e where 6 is the canonical form of OM, that is
Tr[B(e)(u)] = u(e). Take an orthonormal basis of R" and obtaining never vanishing
vector fields H; =: B(e;), then A7 = Y Ly Ly, and A" is called the horizontal
Laplacian. The two heat semigroups ()¢, upstairs, and P; intertwine: Q.(fow) = P,fo
7. Let us observe that if Q¥ is the semigroup corresponding to horizontal Laplacian
AH since dQ; f o T annihilates the vertical bundle, QX (f o m) = Q4(f o 7) and QF
restricts to a semigroup on the set of bounded measurable functions of the form f o 7.

Denote by the semi-group corresponding to the Laplace-Beltrami operators by the
same letters with the supsctipt one indicates the semi-group on 1-forms, then dP, f =
P}d and dQ; = Q}d, which follows from that the exterior differentiation d and the
Laplace-Beltrami operator commute. Now

d(P;f om) = d(P,f) o Tw = P/(df) o T

Similarly d(Q;(fom)) = Q}(df oT'w). Now we represent (); by the horizontal diffusion
which does not satisfy the commutation relation: d.A” # A*d in general. Let W, be
the solution to a differential equation involving the Weitzenbock curvature operator,
see Proposition 3.4.5 in [13], W, //; = W; where 2W; = —3u;! Ric? (usWy).

dQF f o m)(hv) = d(P, f)(v) = Edf (Wyuy o ug ' (v)),

the formula as we explained in the introduction, after conditioning the derivative flow.
Note also that d(Q (f o 7)) = d(P.f o w) = dP;f o T'w and

d(P f)(—) = Qu(df o T'm)(h—).
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3 Examples

3.1 Diffusions on the Euclidean Space

Take the example that N = R? and M = R. Any elliptic diffusion operators on M is
of the form a(m)% and a diffusion operator on NV is of the form B = a(z, y)%; +
d(z, y)f—; + c(x, y)% with 4ad > ¢? and @ > 0. Now B is over A implies that
a(z,y) = a(z) for all y. If a,b, c are constants, a change of variable of the form
x = uand y = (¢/2y/a)u + v transforms B to azaa—; + (d — 62/4a)§—;. In this
local coordinates B and A have a trivial projective relation. In general we may seek a
diffeomorphism @ : (x,y) — (u, v) so that ® intertwines B and B where B is the sum
of aQB%Zz and an operator of the form 88722' This calculation is quite messy. However
according to the theory in [13], the horizontal lifting map
) ( ) = (v, iv).

where p : (z,y) — x and T'p is the derivative map and (T'p)* is the corresponding
adjoint map. Hence the lifting of .4, as the square of the lifting \/6% gives \/E(% +
¢ 4y and resulting the completion of the square procedure and the splitting of 13:

2a dy
d ¢ d\° A d?
B=a|l—+—— d— —)—.
a( * a y) o 4a)dy2

[en) R[St

v BT (@) ) = 0‘3(270? = (

vl
ISHNIT

This procedure trivially generalises to multidimensional case p : R"™? — R"™ with
p(z,y) = z. If 7 : RV — R™ is a surjective smooth map not necessarily of the form
p(z,y) = = we may try to find two diffeomorphisms v on R and ¢ on R™ and so that
p = ¢pomp~! if of simple form. The diffusion operators 3 and A induce two operators
Band A. If B and A are intertwining then so are B and A. Indeed from

Bp)w) = Blgpow)w ™ W) =Blgom®w 'w)
= A(go )T () = Alg o d)(¢ ™ 'p®)) = Ag(p(y)).

This transformation is again not necessary because of the for-mentioned theorem.
In general, [13], if p : R™ x R — R" is the trivial projection and B is defined by

529 K
T +) b,y

By(z,y) = 0" (x)

0%g 0%g
Doz + c(z, y)ain

with a = (a;;) symmetric positive definite and of constant rank, [b(z, ITb(x,y) <

c(z, y)a(x), there is a horizontal lift induced by B and o/ (z) 85289% - given by
10T

hizan(@) = (v, {a(x)"'b, v)).

Or even more generally if p : R™P+4 — R™FP with A a (m + p) X (m + p) matrix
and B a (m + p) X ¢ matrix and C' a ¢ X ¢ matrix with each column of B(x,y) in the
image of A, the horizontal lift map is A 4 (v) = (v, BT (z,y) A~ 1v).
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3.2 The SDE example and the associated connection
Consider SDE (1.1). For each y € M, define the linear map X (y)(e) : R™ — T, M by
X(y)(e) = >, Xi(y)e,e;). Let Y(y) : TyM — [ker X (y)]* be the right inverse
to X(y). The symbol of the generator A is cr;,4 = %X ()X (y)*, which induces a
Riemannian metric on the manifold in the elliptic case, and a sub-Riemannian metric
in the case of o being of constant rank .

This map X also induces an affine connection ?, which we called the LW connec-
tion, on the tangent bundle which is compatible with the Riemannian metric it induced
as below. If v € T}, M is a tangent vector and U € I"I'M a vector field,

(Vo)(3o) = X (o) DY (()U 1))(v).
At each point y € M the linear map
X(y) : R™ = ker X (y) @ [ker X (y)]* — T, M

induces a direct sum decomposition of R™. The connection defined above is a metric
connection with the property that

VoX() =0,  Vec [ker X(yo)l*,v e Ty, M.

This connection is the adjoint connection by the induced diffusion pair on the general
linear frame bundle mentioned earlier. See [11] where it is stated any metric connection
on M can be defined through an SDE, using Narasimhan and Ramanan’s universal
connection.

3.3 The sphere Example

Consider the inclusion i : S™ — R™*1. The tangent space to T,,S™ for x € S™ is of
the form:
T.5" ={v: (z,v) = 0}, (u,v), = (U, V) g1

Let P, be the orthogonal projection of R™ to T,,.5™:

Poiec R s e~ <e,x>#.

This induces the vector fields X;(x) = P,(e;) and the gradient SDE

dr, =Y Py,(e;) o dBj.
=1

For a vector field U € I'T'S™ on S™ and a tangent vector v € T, S™, define the
Levi-Civita connection as following:
Vo, U = Pu((DU):(v))
x

= (DU)(v) - <(DU)z(U)7I>W-



EXAMPLES 12

The term "
(DU, (v), 7) —
|z|
is actually tensorial since ((DU),(v),xz) = (U,v) and hence defines the Christoffel
symbols Ffj, where

_ 1k
Vez.ej = Fz

YR

(VUU)k = DvUV + Ffjviuj.

Solution to gradient SDE are BMs since V x, X; = 0 as observed by 1t6. From tensorial
property, get Gauss and Weingarten’s formula,

(DU)(v) =V, U + a,(Z(x),v), ve T, M,Uel'TM
(DOz(v) = —AE@),v) + (DO ()],  LevM
For e € R™, write e = P,(e) + e€”(x) and obtain
Dy[Py(e)] + Dyle”] = 0.
Take the tangential part of all terms in the above equation to see that
ife € [ker X (z0)]*, Vou[Ps(e)] = A(v, €”(xg)) = 0.

3.4 The pairs of SDEs example and decomposition of noise
In general if we have p : N — M and the bundle maps X : N xR™ — TN and
X : M x R™ — TM are p-related: TpX (u) = X(p(w)), let y; = p(u) for u; the
solution to ~ ~

duy = X(ug) o dBy + Xo(uyg)dt.

Then y, satisfies
dyy = X(yp) o dBy + Xo(yr)dt.

Consider the orthogonal projections at each y € M,

Kt(y): R™ — [ker X(»)]*, K+@y) == YX(y)
K@) : R" —ker[X®)], K@) :=1-YyX(y).
Then
dys = X () K+ (ys) 0 dBy + Xo(yy)dt 3.1)

where the term K (y;) o dB; captures the noise in y;.

To find the conditional law of y; we express the SDE for u; use the term K (1) o
dBy. For a suitable stochastic parallel translation [13] that preserves the splitting of
R™ as the kernel and orthogonal kernel of X (y), define two independent Brownian
motions

Bi- /0 )T K (p(uy))d By

Bs = /i K (p(uy)) o dBy.
0
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Assume now the parallel translation on [ker X ()= is that given in section 3.2. Since
dr; = X(x) K (xy) 0 dB; + Xo(z,)dt, the following filtrations are equal:

o{z,:0<u<s}=0c{Br:0<u<s}
The horizontal lifting map induced by the pair (A, B) is given as following:
bu(v) = XY (r(ww),  u € TpwM,
From which we obtain the horizontal lift X ¥ (u) of the bundle map X:
X (w) = XK (p(w)
and it follows that

duy = X(u)K*(p(ur)) o dBy + X (up) K (p(uy)) 0 dBy + Xo(uy)dt
X (ug) 0 dBy + X (us) K (p(uy)) 0 dBy + Xo(uy)dt
= hy, odzs + X(u) K(p(ur) 0 dBy + (Xo — X&)(ug)dt

If this equation is linear in u; it is possible to compute the conditional expectation of u,
with respect to o{z,, : 0 < u < s} as in the derivative flow case (section 2.8 below).
This discussion is continued at the end of the article.

3.5 The diffeomorphism group example

If M is a compact smooth manifold and X is smooth we may consider an equation
on the space of smooth diffeomorphisms Diff(A/). Define X (f)(z) = X(f(z)) and
Xo(f)(@) = Xo(f(x)) and consider the SDE on Diff(M):

dfy = X(f) 0 dBy + Xo(fy)dt

with fo(x) = x. Then fi(x) is solution to dx; = X (x¢) o dB; with initial point x.
Fix xg € M, we have a map 6 : Diff(M) — M given by 0(f) = f(zp). Let
B = %L;QL&_ and A= 1Lx,Lx,. Then

hy()(@) = X(f) (Y (f(@o)) (@) = X(f@)Y (f(@0)v).
3.6 The twist effect

Consider the polar coordinates in R™, with the origin removed. Consider the con-
ditional expectation of a Brownian motion W; on R™ on |W;| where |W;|, and n-
dimensional Bessel Process, n > 1, lives in R . For n = 2 we are in the situation
that p : R2 — R given by p : (r,6) — r. The B and A diffusion are the Laplacians,
A = %. The map p(r, ) = r? would result the lifting map Ua% = (3:,0) = %%

At this stage we note that if B; is a one dimensional Brownian motion, /; the local
time at 0 of B; and Y; = |B;| + ¢;, a 3-dimensional Bessel process starting from 0.

There is the following beautiful result of Pitman:

1
E{f(BDlo(Ys: s <D} = | [faYde =V f(Yy)
0
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where V is the Markov kernel: V(z, dz) = I"STZS“”dz [23, 4].
A second example, [13], which demonstrates the twist effect is on the product space
of the circle. Letp : S* x.S1 — S* be the projection on the first factor. For0 < a < T,
define the diffusion operator on S* x S*:
1,07 02 0?

and the diffusion operator A = % 8‘9; on S'. Then

v o _ L. 2y 0
B = 2(1 (tan o) )8y2
1 02 5 02 0?2
(55 + (tana) @)+tana8x6y'

H _ -
A T 20z 2

4 Applications

4.1 Parallel Translation

Let P = GLM, the space of linear frames on M with an assignment of metrics on
the fibres. The connection on P is said to be metric if the parallel translation preserves
the metric on the fibres. A connection on P reduces to a connection on the sub-bundle
of oriented orthonormal frame bundles O M, i.e. the horizontal lifting belongs to O M
if and only if it is metric. Let F = P x R™/ ~ be the associated vector bundle
determined by the equivalent relation [u, e] ~ [ug, g~ 'e] hence the vector bundle is
{ue} where e € R",u € P. A section of F' corresponds to a vector field over M. A
parallel translation is induced on 7'M in the obvious way and given a connection on
P let H(e) be the standard horizontal vector field such that H(e),, is the horizontal lift
through u of the vector u(e). If e = 0, H(e) are never vanishing vector fields such
that TR,(H(e)) = H(a"'e). The fundamental vector fields generated by a basis of
gl(n,R) and H(e;) for e; a basis of R™ forms a basis of T'P at any point and gives a
global parallelism on T'P.
If we have a curve o; with o9 = x and 65 = v,

VY =l [V (00 - Y@l

Alternatively VxY (z) = up(X f) where X is a horizontal lift of X, f:P—R"is
defined by f(u) = v~ ![Y (7(u))] and

- 1
X flu) = lim 5, Y(op) = ug 'Y ()

for uy, a horizontal lift of x; starting from ug. Note that the linear maps M, (e) which
defines the connection form on 7T'P are skew symmetric in the case of P = OM, and
determines the Christoffel symbols. A vector field Y is horizontal along a curve oy
if VoY = limp,_o %[//;11/(0;1) — Y (x)] = 0. Define the curvature form to be
the 2-form Q(—, —) := dw(Pn—, P,—) where P}, is the projection to the horizontal
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space. Then the horizontal part of the Lie bracket of two horizontal vector fields X, Y
is the horizontal lift of [7(X), 7(Y")] and its vertical part is determined by w([ X, Y]) =
—2Q(X,Y).

The horizontal lift map u; can also be thought of solutions to:

duy = Z H(e)(u) o doy.

In fact if ¥, is the horizontal lift of &¢, vy = >, (6, €;) H(e;)(5¢). Now //y(0) is not
a solution to a Markovian equation, the pair (//;(¢), u;) is. In local coordinates for vti
the ith component of //,(0)(v), v € Ty, M,

dvf = —T¥ (o] o doy. “.1)
If o is the solution of the SDE dz¥ = X¥(z;) o dB} + Xk (x;)dt then
dvf = —Fﬁj(sct)vaf(mt) odB} — (mt)vt XO (zy)dt.

4.2 How does the choice of connection help in the case of the derivative flow?

One may wonder why a choice of a linear connection removes a martingale term in a
SDE? The answer is that it does not and what it does is the careful choice of a matrix
which transforms the original objects of interest. Recall the differentiation formula:

d(Fy f)(v) = Edf (X}')

where for each ¢, X} is a vector field with X (z) = v. The choice of X} is by no
means unique. Both the derivative flows and the damped parallel translations are valid
choices and the linear connection which is intrinsic to the SDE leads to the correct
choice. To make this plain let us now consider R” as a trivial manifold with the non-
trivial Riemannian metric and affine connection induced by X. In components, let U;
be functions on R” and U = (U, ...,U,) and zp,v € R™,

(VolDi(@o) = (DUk)zy () + Y (X (20)D(Y (2)(e;), 1) (0)Ujex.
J
The last term determines the Christoffel symbols, c.f. [15].
Given a vector field along a continuous curve there is the stochastic covariant dif-
ferentiation defined for almost surely all paths, given by DV; = //, 4 £(//©)~'V; where

// ¢ is the stochastic parallel translation using the connection V, the adjoint connection
to V to take into account of the torsion effect. Alternatively

. d . )
(DVyF = @Vik +Th(o)V{ o do.
The derivative flow V; = T'¢;(vp) satisfies the SDE:

DV, = VX;(Vy) 0 dB] + VXo(V;)dt.
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Let V; = E{V;| 2, : 0 < s < T}. Then
A _ 1 o _ _
DV, = —§(Ric)#(Vt)dt + VXo(Vy)dt.

In the setting of the Wiener space §2 and Z = £.(x¢) the Itd map, let V; = TZ,(h) for h
a Cameron Martin vector then

DV, = VX;(V;) 0 dB] + VXo(Vy)dt + X () (hy)dt
and the corresponding conditional expectation of the vector field V; satisfies
. 1 . _ o _ .
DV, = —i(Ric)#(Vt)dt + VXo(Vy)dt + X (2)(hy)dt.
This means, 7/{11_4 is differentiable in ¢ and hence a Cameron-Martin vector and V; is
the induced Bismut-tangent vector by parallel translation.

4.3 A word about the stochastic filtering problem

Consider the filtering problem for a one dimensional signal process x(t) transmitted
through a noise channel

dr; = olz)dt + o dW,
dyy B(xy)dt 4 \/adB,

where B, and WV, are independent Brownian motions. The problem is to find the prob-
ability density of z(¢) conditioned on the observation process y(t) which is closely
associated to the following horizontal lifting problem.

Let B and A be intertwined diffusion operators. Consider the martingale problems
on the path spaces, C, N and C, M, on N and M respectively. Let u; and y; be
the canonical process on /N and on M, assumed to exist for all time, so that for f €
C>®(M)and g € C(N)

t
MIAL = fg) — fo) - /O Af(ys)ds

dg,B .
M, :

t
g(ug) — glug) — / Bg(us)ds
0

are martingales. For a o{ys : 0 < s < t}-predictable T* M-valued process ¢; which
is along y; we could also define a local martingale Mf A by

t
g4 M) =2 [ A Os

It is also denoted by

t
MPA = /0 bed{ys}.
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The conditional law of u; given y, is given by integration against function f from
N to R, define

71 (0)(@) = E{ funlp(u) = o }. (42)

This conditional expectation is defined for P;}uo), the A diffusion measures, almost

surely all o and extends to ¢; o h,,, for ¢, as before and h the horizontal lifting map.
The following is from Theorem 4.5.1 in [13].

Theorem 4.1 If f is C? with Bf and o2 (df, df) o h bounded, then

t

t
o f o) = fluo) + / o (Bf)uo)ds + / df o hau)d{ys).  (43)
0 0

To see this holds, taking conditional expectation of the following equation:

t
Flug) = flug) + / Bf(ug)ds + M®
0
and use the following theorem, Proposition 4.3.5 in [13],
E{Mtde|p(u) _ x} — MtE{dfohus ‘p(u):I }7"4'

In the case that p : M x My — M is the trivial projection of the product manifold to
M, let A be a cohesive diffusion operator on M, L the diffusion generator on M, and
uy = (yt, x¢) a B diffusion. If x; is a Markov process with generator £ and 53 a coupling
of £ and A, by which we mean that B is intertwined with £ and .4 by the projections
p; to the first or the second coordinates, there is a bilinear '8 : T*M x T*M, — R
such that

B(g1 ® g2)(x,y) = (Lg1)@)g2(¥) + g1(@)(Ag2)(®) + TP((dg1), (dga),)  (4.4)
where g1 ® g2 : M x My — R denotes the map (x,y) — ¢g1(x)g2(y) and g1, g2

are C?. In fact [5((dg1)a, (dg2)y) = 0f. ,(dd1,dgz) where §; = g(p;). Then o
T My xT* My — T My x T'M3 is of the following form. For ¢y € T My, by € Ty M>

The horizontal lifting map is given by
v (0,00 (@)

where v : T, M™* — T} M, are defined by

1
la(alty)) = §F”"(£1,eg).
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In the theorem above take 1 ® f to see that m,B(1 ® f) reduces to £f and the filtering
equation is:

t

t
mof(@o) = fxo) + /O T (L) o)ds + /0 7 (df (@ 0 () ) (@o)d{ys

The case of non-Markovian observation when the non-Makovian factor is intro-
duced through the drift equation for the noise process y; can be dealt with through a
Girsanov transformation. See [13] for detail. Finally we note that the field of stochas-
tic filtering is vast and deep and we did not and would not attempt to give historical
references as they deserve. However we would like to mention a recent development
[5] which explore the geometry of the signal-observation system. See also [16], [17],
[14] and recent work of T. Kurtz .
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