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Abstract
We discuss the geometry induced by pairs of diffusion operators on two states spaces
related by a map from one space to the other. This geometry led us to an intrinsic point
of view on filtering. This will be explained plainly by examples, in local coordinates
and in the metric setting. This article draws largely from the books [11, 13] and aim to
have a comprehensive account of the geometry for a general audience.

1 Introduction

Let p be a differentiable map from a manifold N to M which intertwines a diffusion
operator B on N with another diffusion operator, A on M , that is (Af ) ◦ p = B(f ◦ p)
for a given function f from M to R. Suppose that A is elliptic and f is smooth.
It is stated in [13] this intertwining pair of operators determine a unique horizontal
lifting map h from TM to TN which is induced by the symbols of A and B and the
image of the lifting map determines a subspace of the tangent space to N and is called
the associated horizontal tangent space and denoted by H . The condition that A is
elliptic can be replaced by cohesiveness, that is, the symbol σA : T ∗xM → TxM has
constant non-zero rank and A is along the image of σA. If A is of the form, A =
1
2

∑m
i=1 LXiLXi + LX0 , it is cohesive if span{X1(x), . . . , Xm(x)} are of constant

rank and contains X0(x). Throughout this paper we assume that A is cohesive.
For simplicity we assume that the B-diffusion does not explode. The pair of inter-

twining operators induces the splitting of TN in the case that B is elliptic or the split-
ting of Tp−1[Im(σA)] = ker(Tup)⊕Hu. Hence a diffusion operatorA in Hörmander
form has a horizontal liftAH , operator onN , through the horizontal lift of the defining
corresponding vector fields. For operators not in Hörmander form an intrinsic defini-
tion of horizontal lift can also be defined by the lift of its symbols and another asso-
ciated operator δA from the space of differential forms to the space of functions and
such that δA(df ) = Af . In this case the diffusion operator B splits and B = AH +BV

where BV acts only on the vertical bundle, which leads to computation of the condi-
tional distribution of the B diffusion given a A diffusion. We describe this in a number
of special cases.

This work was inspired by an observation for gradient stochastic flows. Let

dxt = X(xt) ◦ dBt +X0(xt)dt
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be a gradient stochastic differential equations (SDEs). As usual (Bt) is an Rm valued
Brownian motion. The bundle map X : Rm ×M → TM is induced by an isometric
embedding map f : M → Rm. Define Y (x) := df (x) : TxM → Rm and

〈X(x)e, v〉 := 〈e, Y (x)(v)〉.

Then kerX(x) is the normal bundle νM and [kerX(x)]⊥ corresponds to the tangential
bundle. It was observed by Itô that the solution is a Brownian motion, that is the
infinitesimal generator of the solutions is 1

2∆. It was further developed in [8] that if we
choose an orthonormal basis {ei} of Rm and define the vector fields Xi(x) = X(x)(e)
then the SDE now written as

dxt =
m∑
i=1

Xi(xt) ◦ dBit +X0(xt)dt (1.1)

and the Itô correction term
∑
∇Xi(Xi) vanishes. In [18] this observation is used

to prove a Bismut type formula for differential forms related to gradient Brownian
flow, in [20] to obtain an effective criterion for strong 1-completeness, and in [19]
to obtain moment estimates for the derivative flow Tξt of the gradient SDEs. The key
observation was that for each i either∇Xi orXi vanishes and if Tξt(v) is the derivative
flow for the SDE, Tξt(v) is in fact the derivative in probability of the solution ξt(x) at
x in the direction v satisfying

//td(//−1
t vt) =

m∑
i=1

∇Xi(vt) ◦ dBit +∇X0(vt)dt.

where //t(σ) : Tσ0M → Tσt
M denotes the stochastic parallel translation correspond-

ing to the Levi-Civita connection along a path σ which is defined almost surely for
almost all continuous paths. Consider the Girsanov transform

Bt → Bt +
∫ t

0

∑
i

〈∇vs
Xi, vs〉xs

|vs|2xs

eids

and
∫ t

0

∑
i

〈∇vsXi,vs〉xs

|vs|2xs

eids =
∫ t

0
(∇vsX)∗(vs)
|vs|2xs

ds. Let x̃t and ṽt be the corresponding

solutions to the above two SDEs then E|vt|pxt
= E|ṽt|px̃t

Gt where Gt is the Girsanov
density. It transpires that the transformation does not change (1.1). Since |vt|p =
|v0|pGtea

p
t (xt), where at is a term only depending on xt not on vt, see equation (18) in

[20] E|vt|p = Eea
p
t (x̃t) = Eea

p
t (xt). In summary the exponential martingale term in the

formula for |vt|p can be considered as the Radon-Nikodym derivative of a new measure
given by a Cameron-Martin transformation on the path space and this Cameron-martin
transformation has no effect on the x-process.

Letting Fxs = σ{ξs(x) : 0 ≤ s ≤ t}, E{//−1
t vt|Fxt } satisfies [9],

d

dt
//−1
t Wt = −1

2
//−1
t (σ)Ric#(Wt)dt

where Ricx : TxM → TxM is the linear map induced by the Ricci tensor. The process
Wt is called damped stochastic parallel translation and this observation allows us to
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give pointwise bounds on the conditional expectation of the derivative flow. Together
with an intertwining formula

dPt(v) = Edf (Tξt(v)),

this gives an intrinsic probabilistic representation for dPtf = Edf (Wt), and leads to

|∇Ptf |(x) ≤ |Pt(∇f )|Lp (x)(E|Wt|q)
1
q (x)

and∇|Ptf |(x) ≤ |df |L∞E|Wt|(x) which in the case of the Ricci curvature is bounded
below by a positive constant leads to:

|∇Pt|(x) ≤ e−Ct|Pt(∇f )|Lp (x)

and
∇|Ptf |(x) ≤ |df |L∞e−Ct

respectively.
If the Ricci curvature is bounded below by a function ρ, one has the following

pointwise bound on the derivative of the heat semigroup:

|∇Pt|(x) ≤ |Pt(∇f )|Lp (x)
(

Ee−q/2
R t
0 ρ(xs)ds

) 1
q

.

See [21] for an application, and [6], [22], [7], [24] for interesting work associated with
differentiation of heat semi-groups.

It turns out that the discussion for the gradient SDE are not particular to the gradient
system. Given a cohesive operator the same consideration works provided that the
linear connection, equivalently stochastic parallel transport or horizontal lifting map,
we use is the correct one.

To put the gradient SDE into context we introduce a diffusion generator on GLM ,
the general linear frame bundle of M . Let ηit be the partial flow of Xi and let XG

i be
the vector field corresponding to the flow {Tηit(u) : u ∈ GLM}. Let

B =
1
2

∑
LXG

i
LXG

i
+ LXG

0
.

Then B is over A, the generator of SDE (1.1). The symbol of A is X∗(x)X(x) and
likewise there is a similar formulation for σB and hu = XGL(u)Y (π(u)) where Y (x)
is the partial inverse of X(x) and XG(e) =

∑
XG
i 〈e, ei〉.

Open Question. Let Wd be the Wasserstein distance on the space of probability
measures on M associated to the Riemannian distance function, show that if

Wd(P ∗t µ, P
∗
t ν) ≤ ectWd(µ, ν)

the same inequality holds true for the Riemannian covering space of M . Note that if
this inequality is obtained by an estimate through lower bound on the Ricci curvature,
the same inequality holds on the universal covering space. It would be interesting to
see a direct transfer of the inequality from one space to the other. On the other hand if
ecT is replaced by Cect we do not expect the same conclusion.
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2 Horizontal lift of vectors and operators

Let p : N →M be a smooth map and B, A intertwining diffusions, that is

B(f ◦ p) = Af ◦ p

for all smooth function f : M → R, with semi-groups Qt and Pt respectively. Instead
of intertwining we also say that B is over A.

Note that for some authors intertwining may refer to a more general concept for
operators: AD = D(B+k), where k is a constant andD an oprator. For example if ∆q

is the Laplace-Beltrami operator on differential q-forms over a Riemannian manifold
d∆ = ∆1d. The usefulness of such relation comes largely from the relation between
their respective eigenfunctions. For h a smooth positive function, the following relation
(∆ − 2L∇h)(eh) = eh(∆ + V ) relates to h-transform and links a diffusion operator
∆−2L∇h with L+V for a suitable potential function V . See [1] for further discussion.

It follows that

∂

∂t
(Ptf ◦ p) =

∂

∂t
(Ptf ) ◦ p = A(Ptf ) ◦ p = B(Ptf ◦ p).

Since Ptf ◦ p = f ◦ p at t = 0 and Ptf ◦ p solves ∂
∂t = B, we have the intertwining

relation of semi-groups:
Ptf ◦ p = Qt(f ◦ p). (2.1)

The B diffusion ut is seen to satisfy Dynkin’s criterion for p(ut) to be a Markov
process. This intertwining of semi-groups has come up in other context. The relation
V Pt = QtV , where V is a Markov kernel from N to M , is relates to this one when
a choice of an inverse to p is made. For example take M to be a smooth Riemannian
manifold and N the orthonormal frame bundle. One would fix a frame for each point
in M . Note that the law of the Horizontal Brownian motion has been shown to be the
law of the Brownian motion and independent of the initial frame [8].

The symbol of an operator L on a manifold M is a map from T ∗M × T ∗M → R
such that for f, g : M → R,

σL(df, dg) =
1
2

[L(fg)− fLg − gLf ] .

If L = 1
2aij

∂2

∂xj∂xj
+ bk

∂
∂xk

is an elliptic operator on Rn its symbol is (aij) which
induces a Riemannian metric (gij) = (aij)−1 on Rn.

For the intertwining diffusions: p∗σB = σA, or

Tup ◦ σBu ((Tup)∗) = σAp(u),

if the symbols are considered as linear maps from the cotangent to the tangent spaces.
We stress again that throughout this article we assume that A is cohesive, i.e. σA has
constant rank and A is along the distribution E = Im[σA].

There is a unique horizontal lifting map [13] such that, now with the symbols con-
sidered as linear maps from the cotangent space to the tangent spaces

hu ◦ σAp(u) = σBu (Tup)∗.
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T ∗uN

T ∗p(u)M Tp(u)M

TuN

(Tup)∗ Tup

σAπ(u)

σBu

hu

Let Hu to be the image of hu, called the horizontal distribution. They consists of
image of differential forms of the form φ(Tp−) for φ ∈ T ∗M by σB. Note that this
cannot be reduced to the case of A being elliptic because Ex may not give rise to a
submanifold of M .

If an operator L has the Hörmander form representation

L =
1
2

m∑
j=1

LXjLXj + LX0 (2.2)

Define X(x) : Rm → TxM by X(x) =
∑
Xi(x)ei for {ei} an orthonormal basis of

Rm. Then
σLx =

1
2
X(x)X(x)∗ : T ∗xM → TxM.

In the elliptic case, σL induces a Riemannian metric and X∗(x)φ = Y (x)φ#.
An operator L is along a distribution S := {Sx : x ∈ M}, where each Sx is a

subspace of TxM , if Lψ = 0 whenever ψx(Sx) = {0}. The horizontal lifts of tangent
vectors induce a horizontal lift of the operator which is denoted as AH . To define a
horizontal lift of a diffusion operator intrinsically, we introduced an operator δL. If M
is endowed with a Riemannian metric let L = ∆ be the Laplace-Beltrami operator, this
is d∗, the L2 adjoint of d the differential operator d. Then d∗(fφ) = fd∗φ + ι∇f (φ)
for φ a differential 1-form and f a function, using the Riemannian metric to define the
gradient operator, and ∆ = d∗d.

For a general diffusion operator it was shown in [13] that there is a unique linear
operator δL : Cr+1T ∗M → Cr(M ) determined by δL(df ) = Lf and δL(fφ) =
fδL(φ) + dfσL(φ). If L has the representation (2.2),

δL =
1
2

m∑
j=1

LXj ιXj + ιX0 .

Here ι is the interior product, ιvφ := φ(v). The symbol of the operator now plays the
role of the Riemannian metric. For B over A,

δB(p∗(df )) = p∗(δAdf ).

There are many operators over A and only one of which, AH , is horizontal. An oper-
ator L is horizontal (respectively vertical ) if it is along the horizontal or the vertical
distribution. An operator B is vertical if and only if B(f ◦ p) = 0 for all f and B−AH
is a vertical operator.
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The foundation of the noise decomposition theorem in [13] depends on the follow-
ing decomposition of operator B, when A is cohesive,

B = AH + (B −AH ) (2.3)

and it can be proven that B −AH is a vertical operator.

2.1 In metric form
Note that σA gives rise to a positive definite bilinear form on T ∗M :

〈φ, ψ〉x = φ(x)(σAx (ψ(x)))

and this induces an inner product on Ex:

〈u, v〉x = (σAx )−1(u)(v).

For an orthonormal basis {ei} ofEx, let e∗i = (σAx )−1(ei). Then e∗jσ
A(e∗i ) = (σAx )−1(ej)(ei) =

〈ej , ei〉 and hence

〈φ, ψ〉x =
∑
i

〈ej , ei〉φ(ei)ψ(ej) =
∑
i

φ(ei)ψ(ei).

Likewise the symbol σA
H

induces an inner product on T ∗N with the property that
〈φ ◦Tp, ψ ◦Tp〉 = 〈φ, ψ〉 and a metric on H ⊂ TN which is the same as that induced
by h from TM . Note that σB = σA

H

+ σB
V

, where BV is the vertical part of B, and
Im[σB

V

] ∩ H = {0}. Let µ be an invariant measure for AH and µM = p∗(µ) the
pushed forward measure which is an invariant measure for A.

If A is symmetric,∫
M

〈df, dg〉 µM (dx) =
∫
σA(df, dg) µM (dx)

=
1
2

∫
[A(fg)− f (Ag)− g(Af )] µM (dx)

= −
∫
M

fAg dµM (x).

Hence A = −d∗d and
δA = −d∗

for d∗ the L2 adjoint. Similarly we have an L2 adjoint on N and AH = −d∗d. For a
1-form φ on M ,∫
N

〈φ◦Tp, d(g◦p)〉dµN =
∫
〈d∗(φ◦Tp), g◦p〉dµN =

∫
〈E{d∗(φ◦Tp)|p}, g◦p〉dµN

Hence E{d∗(φ◦Tp)|p} = (d∗φ)◦p. Since for u+v ∈ H⊕ker[Tp], h◦Tp(u+v) = u,
every differential form ψ on N induces a form φ = ψ ◦ h such that ψ = φ(Tπ) when
restricted to H , hence E{d∗ψ)|p} = (d∗(ψ ◦ h)) ◦ p.



HORIZONTAL LIFT OF VECTORS AND OPERATORS 7

2.2 On the Heisenberg group
A Lie group is a group G with a manifold structure such that the group multiplication
G × G → G and taking inverse are smooth. Its tangent space at the identity g can
be identified with left invariant vector fields on G, X(a) = TLaX(e) and we denote
A∗ the left invariant vector field with value A at the identity. The tangent space TaG
at a can be identified with g by the derivative TLa of the left translation map. Let
αt = exp(tA) be the solution flow to the left invariant vector field TLaA whose value
at 0 is the identity then it is also the flow for the corresponding right invariant vector
field: α̇s = d

dt |t=s exp(t−s)A expsA = TRαsA. Then ut = a exp(tA) is the solution
flow through a.

Consider the Heisenberg group G whose elements are (x, y, z) ∈ R3 with group
product

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 +
1
2

(x1y2 − x2y1).

The Lie bracket operation is [(a, b, c), (a′, b′, c′)] = (0, 0, ab′ − a′b). Note that for
X,Y ∈ g, eXeY = eX+Y+ 1

2 [X,Y ]. If A = (a, b, c), then A∗ = (a, b, c+ 1
2 (xb− ya)).

Consider the projection π : G→ R2 where π(x, y, z) = (x, y). Let

X1(x, y, z) = (1, 0,−1
2
y), X2(x, y, z) = (0, 1,

1
2
x), X3(x, y, z) = (0, 0,−1)

be the left invariant vector fields corresponding to the standard basis of g. The vector
spaces H(x,y,z) = span{X1, X2} = {(a, b, 1

2 (xb − ya))} are of rank 2. They are the
horizontal tangent spaces associated to the Laplacian A = 1

2 ( ∂
2

∂x2 + ∂2

∂y2 ) on R2 and

the left invariant Laplacian B := 1
2

∑3
i=1 LXiLXi on G. The vertical tangent space is

{(0, 0, c)} and there is a a horizontal lifting map from T(x,y)R2:

h(x,y,z)(a, b) = (a, b,
1
2

(xb− ya)).

The horizontal lift of A is the hypo-elliptic diffusion operator AH = 1
2

∑2
i=1 LXi

LXi

and the horizontal lift of a 2-dimensional Brownian motion, the horizontal Brownian
motion, has its third component the Levy area. In fact for almost surely all continuous
path σ : [0, T ]→M with σ(0) = 0 we have the horizontal lift curve :

σ̃(t) =
(
σ1(t), σ2(t),

1
2

∫ t

0

(
σ1(t) ◦ dσ2(t)− σ2(t) ◦ dσ1(t)

))
.

The hypoelliptic semi-group Qt in R3 and the heat semigroup Pt satisfies Qt(f ◦
π) = e

1
2 t∆f ◦ π and d(e

1
2 t∆f ) = Qt(df ◦ π) ◦ h.

2.3 The local coordinate formulation
Let M be a smooth Riemannian manifold and π : P → M a principal bundle with
group G acting on the right, of which we are mainly interested in the case when P
is the general linear frame bundle of M or the orthonormal frame bundle with G the
special general linear group or the special orthogonal group of Rn. For A ∈ g, the



HORIZONTAL LIFT OF VECTORS AND OPERATORS 8

Lie algebra of G, the action of the one parameter group exp(tA) on P induces the
fundamental vector field A∗ on P . Let V TP be the vertical tangent bundle consisting
of tangent vectors in the kernel of the projection Tπ so the fundamental vector fields
are tangent to the fibres and A 7→ A∗(u) is a linear isomorphism from g to V TuP . At
each point a complementary space, called the horizontal space, can be assigned in a
right invariant way: HTuaP = (Ra)∗HTuP .

For the general linear group GL(n) its Lie algebra is the vector space of all n by n
matrices and the value at a of the left invariant vector fieldA∗ is aA. The Lie bracket is
just the matrix commutator, [A,B] = AB − BA. Every finite dimensional Lie group
is homomorphic to a matrix Lie group by the adjoint map. For a ∈ G, the tangent
map to the conjugation φ : g ∈ G 7→ aga−1 ∈ G induces the adjoint representa-
tion ad(a) : G → GL(g; g). For X ∈ g, φ∗X∗(g) = TLaTRa−1 (X(a−1ga)) =
TRa−1X(ga) = (Ra−1 )∗X(g) and is left invariant so ad(a)(A) = TRa−1X∗(a). The
Lie bracket of two left invariant vector fields [X∗, Y ∗] = limt→0

1
t (exp(tY )∗X∗ −

X∗) = limt→0
1
t (RetY ) )∗X∗ − X∗) is again a left invariant vector field and this de-

fines a Lie bracket on g by [X,Y ]∗ = [X∗, Y ∗]. The Lie algebra homomorphism
induced by a 7→ ad(a) is denoted by Ad : g → gl(n,R) is given by AdX (Y ) =
[X,Y ]. A tangent vector at a ∈ G can be represented in a number of different
ways, notably by the curves of the form a exp(tA), exp(tB)a. The Lie algebra ele-
ments are related by B = aAa−1 = ad(a)A and d

dt |t=0A exp(TB)A−1 = ad(A)B
so A exp(tB)A−1 = exp(tad(A)B). The left invariant vector fields provides a paral-
lelism of TG and there is a canonical left invariant 1-form onG, ωg(TLg(v)) = Ge(v),
determined by θ(A∗) = A.

The collection of left invariant vector fields on TP forms also an algebra and the
map A → A∗ is a Lie-algebra isomorphism. A horizontal subspace of the tangent
space to the principal bundle TP is determined by the kernel of a connection 1-form
ω, which is a g-value differential 1-form on P such that (i) ω(A∗) = A, for all A ∈ g,
and (2) (Ra)∗ω = ad(a−1)ω(−). Here A∗ refers to the TP valued left invariant vector
field. The first condition means that the connection 1-form restricts to an isomorpism
from V TP to g and the second is a compatibility condition following from that the
fundamental vector field corresponding to ad(a−1)A is (Ra)∗A∗. The kernel of ω is
right invariant since ωua(TRaV ) = (Ra)∗ω(V ) = ad(a)ωu(V ) for any V ∈ TuP .

In a local chart π−1(U ) with U an open set of M and u ∈ π−1(U )→ (π(u), φ(u))
the chart map where φ(ua) = φ(u)a, the connection map satisfies ω(x,a)(0, B∗) = B
for B∗ the left invariant vector field of G corresponding to B ∈ g and

ω(x,a)(v,B∗(a)) = ad(a−1)(Mxv) +B

whereMx : TxM → g is a linear map varying smoothly with x. The trivial connection
for a product manifoldM×Gwould correspond to a choice ofMx withMx identically
zero and so the horizontal vectors are of the form (v, 0). The horizontal tangent space
at (x, a) is the linear space generated by

H(x,a)TP = {(v,−TRa(Mxv)), v ∈ TxU, a ∈ G}.

Given a connection on P , for every differentiable path σt onM , through each frame
u0 over σ0 there is a unique ut which projects down to σt on M given by ω(u̇t) = 0.
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In local coordinates ut = (σt, gt), ω(u̇t) = ad(g−1
t )ω(σt,e)(σ̇t, TR−1

gt
ġt) and gt−1ġt +

ad(g−1
t )Mσt

σ̇t = 0. If ut is a lift of xt then ut◦g is the horizontal lift of xt through u0g
so ut : π−1(σ0)→ π−1(σt) is an isomorphism. This formulation works for continuous
paths. Consider the path of continuous paths over M and a Brownian motion measure.
For almost surely all continuous paths σt a horizontal curve exists, as solution to the
stochastic differential equation in Stratnovitch form:

dgt = −Mσt
(ei)(gt) ◦ dσit.

Here (ei) is an orthonormal basis of Rn, and the M·(ei)’s are matrices in g and the
solution ut induces a transformation from the fibre at σ0 to the fibre at σt.

2.4 The orthonormal frame bundle
Let N = OM be the orthonormal frame bundle with π the natural projection to a
Riemannian manifold M and an right invariant Riemannian metric. Let A = ∆ be the
Laplacian on M and B the Laplacian on N . We may choose the Laplacian B to be
of the form 1

2LA∗iLA∗i + 1
2LHi

LHi
where Ai are fundamental vector fields and {Hi}

the standard horizontal vector fields. The horizontal lifting map hu is: v ∈ TM 7→
(v, 0). We mention two Hörmander form representation for the horizontal lift. The
first one consists of of horizontal lifts of vector fields that defines A. The second
one is more canonical. Let {B(e), e ∈ Rn} be the standard horizontal vector fields
on OM determined by θ(B(e)) = e where θ is the canonical form of OM , that is
Tπ[B(e)(u)] = u(e). Take an orthonormal basis of Rn and obtaining never vanishing
vector fields Hi =: B(ei), then AH =

∑
LHi

LHi
and AH is called the horizontal

Laplacian. The two heat semigroupsQt, upstairs, and Pt intertwine: Qt(f ◦π) = Ptf ◦
π. Let us observe that if QHt is the semigroup corresponding to horizontal Laplacian
AH , since dQtf ◦ Tπ annihilates the vertical bundle, QHt (f ◦ π) = Qt(f ◦ π) and QHt
restricts to a semigroup on the set of bounded measurable functions of the form f ◦ π.

Denote by the semi-group corresponding to the Laplace-Beltrami operators by the
same letters with the supsctipt one indicates the semi-group on 1-forms, then dPtf =
P 1
t d and dQt = Q1

td, which follows from that the exterior differentiation d and the
Laplace-Beltrami operator commute. Now

d(Ptf ◦ π) = d(Ptf ) ◦ Tπ = P 1
t (df ) ◦ Tπ

Similarly d(Qt(f◦π)) = Q1
t (df◦Tπ). Now we representQt by the horizontal diffusion

which does not satisfy the commutation relation: dAH 6= AHd in general. Let W̄t be
the solution to a differential equation involving the Weitzenbock curvature operator,
see Proposition 3.4.5 in [13], W̄t//t = Wt where d

dtW̄t = − 1
2u
−1
t Ric#(utW̄t).

d(QHt f ◦ π)(hv) = d(Ptf )(v) = Edf (W̄tut ◦ u−1
0 (v)),

the formula as we explained in the introduction, after conditioning the derivative flow.
Note also that d(QHt (f ◦ π)) = d(Ptf ◦ π) = dPtf ◦ Tπ and

d(Ptf )(−) = Qt(df ◦ Tπ)(h−).
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3 Examples

3.1 Diffusions on the Euclidean Space
Take the example that N = R2 and M = R. Any elliptic diffusion operators on M is
of the form a(x) d

2

dx2 and a diffusion operator on N is of the form B = a(x, y) d
2

dx2 +
d(x, y) d

2

dy2 + c(x, y) d2

dxdy with 4ad > c2 and a > 0. Now B is over A implies that
a(x, y) = a(x) for all y. If a, b, c are constants, a change of variable of the form
x = u and y = (c/2

√
a)u + v transforms B to a2 ∂2

∂u2 + (d − c2/4a) ∂
2

∂v2 . In this
local coordinates B and A have a trivial projective relation. In general we may seek a
diffeomorphism Φ : (x, y) 7→ (u, v) so that Φ intertwines B and B̃ where B̃ is the sum
of a2 ∂2

∂u2 and an operator of the form ∂2

∂v2 . This calculation is quite messy. However
according to the theory in [13], the horizontal lifting map

v 7→ σB(Tp)∗(σA)−1(v) = σB(
v

a
, 0)T =

(
a c

2
c
2 d

)(
v
a
0

)
= (v,

c

2a
v).

where p : (x, y) → x and Tp is the derivative map and (Tp)∗ is the corresponding
adjoint map. Hence the lifting of A, as the square of the lifting

√
a d
dx gives

√
a( ddx +

c
2a

d
dy ) and resulting the completion of the square procedure and the splitting of B:

B = a

(
d

dx
+

c

2a
d

dy

)2

+ (d− c2

4a
)
d2

dy2
.

This procedure trivially generalises to multidimensional case p : Rn+p → Rn with
p(x, y) = x. If π : RN → Rm is a surjective smooth map not necessarily of the form
p(x, y) = x we may try to find two diffeomorphisms ψ on RN and φ on Rm and so that
p = φ◦πψ−1 if of simple form. The diffusion operators B andA induce two operators
B̃ and Ã. If B and A are intertwining then so are B̃ and Ã. Indeed from

B̃(gp)(y)) = B(gp ◦ ψ)(ψ−1(y)) = B(g ◦ φπ)(ψ−1(y))
= A(g ◦ φ)(πψ−1(y)) = A(g ◦ φ)(φ−1p(y)) = Ãg(p(y)).

This transformation is again not necessary because of the for-mentioned theorem.
In general, [13], if p : Rn × R→ Rn is the trivial projection and B is defined by

Bg(x, y) = σij(x)
∂2g

∂xi∂xj
+
∑

bk(x, y)
∂2g

∂y∂xk
+ c(x, y)

∂2g

∂y2

with a = (aij) symmetric positive definite and of constant rank, [b(x, y)]T b(x, y) ≤
c(x, y)a(x), there is a horizontal lift induced by B and σij(x) ∂2g

∂xi∂xj
given by

h(x,y)(v) = (v, 〈a(x)−1b, v〉).

Or even more generally if p : Rm+p+q → Rm+p with A a (m + p) × (m + p) matrix
and B a (m + p)× q matrix and C a q × q matrix with each column of B(x, y) in the
image of A, the horizontal lift map is h(x,y)(v) = (v,BT (x, y)A−1v).
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3.2 The SDE example and the associated connection
Consider SDE (1.1). For each y ∈M , define the linear map X(y)(e) : Rm → TyM by
X(y)(e) =

∑m
i=1Xi(y)〈e, ei〉. Let Y (y) : TyM → [kerX(y)]⊥ be the right inverse

to X(y). The symbol of the generator A is σAy = 1
2X(y)X(y)∗, which induces a

Riemannian metric on the manifold in the elliptic case, and a sub-Riemannian metric
in the case of σA being of constant rank .

This map X also induces an affine connection ∇̆, which we called the LW connec-
tion, on the tangent bundle which is compatible with the Riemannian metric it induced
as below. If v ∈ Ty0M is a tangent vector and U ∈ ΓTM a vector field,

(∇̆vU )(y0) = X(y0)D(Y (y)U (y))(v).

At each point y ∈M the linear map

X(y) : Rm = kerX(y)⊕ [kerX(y)]⊥ → TyM

induces a direct sum decomposition of Rm. The connection defined above is a metric
connection with the property that

∇̆vX(e) ≡ 0, ∀e ∈ [kerX(y0)]⊥, v ∈ Ty0M.

This connection is the adjoint connection by the induced diffusion pair on the general
linear frame bundle mentioned earlier. See [11] where it is stated any metric connection
on M can be defined through an SDE, using Narasimhan and Ramanan’s universal
connection.

3.3 The sphere Example
Consider the inclusion i : Sn → Rn+1. The tangent space to TxSn for x ∈ Sn is of
the form:

TxS
n = {v : 〈x, v〉 = 0}, 〈u, v〉x = 〈u, v〉Rn+1 .

Let Px be the orthogonal projection of Rn to TxSn:

Px : e ∈ Rn+1 7→ e− 〈e, x〉 x
|x|2

.

This induces the vector fields Xi(x) = Px(ei) and the gradient SDE

dxt =
m∑
i=1

Pxt
(ei) ◦ dBit.

For a vector field U ∈ ΓTSn on Sn and a tangent vector v ∈ TxS
n, define the

Levi-Civita connection as following:

∇vU := Px((DU )x(v))

= (DU )x(v)− 〈(DU )x(v), x〉 x
|x|2

.
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The term
〈(DU )x(v), x〉 x

|x|2

is actually tensorial since 〈(DU )x(v), x〉 = 〈U, v〉 and hence defines the Christoffel
symbols Γkij , where

∇ei
ej = Γkij , (∇vU )k = DvU

ν + Γkijviuj .

Solution to gradient SDE are BMs since∇Xi
Xi = 0 as observed by Itô. From tensorial

property, get Gauss and Weingarten’s formula,

(DU )x(v) = ∇vU + αx(Z(x), v), v ∈ TxM,U ∈ ΓTM
(Dξ)x(v) = −A(ξ(x), v) + [(Dξ)x(v)]ν , ξ ∈ νM

For e ∈ Rm, write e = Px(e) + eν(x) and obtain

Dv[Px(e)] +Dv[eν] = 0.

Take the tangential part of all terms in the above equation to see that

if e ∈ [kerX(x0)]⊥, ∇v[Px(e)] = A(v, eν(x0)) = 0.

3.4 The pairs of SDEs example and decomposition of noise
In general if we have p : N → M and the bundle maps X̃ : N × Rm → TN and
X : M × Rm → TM are p-related: TpX̃(u) = X(p(u)), let yt = p(ut) for ut the
solution to

dut = X̃(ut) ◦ dBt + X̃0(ut)dt.

Then yt satisfies
dyt = X(yt) ◦ dBt +X0(yt)dt.

Consider the orthogonal projections at each y ∈M ,

K⊥(y) : Rm → [kerX(y)]⊥, K⊥(y) := Y (y)X(y)
K(y) : Rm → ker[X(y)], K(y) := I − Y (y)X(y).

Then
dyt = X(yt)K⊥(yt) ◦ dBt +X0(yt)dt (3.1)

where the term K⊥(yt) ◦ dBt captures the noise in yt.
To find the conditional law of yt we express the SDE for ut use the term K⊥(yt) ◦

dBt. For a suitable stochastic parallel translation [13] that preserves the splitting of
Rm as the kernel and orthogonal kernel of X(y), define two independent Brownian
motions

B⊥t :=
∫ s

0

//−1
t K⊥(p(ut))dBt

βs :=
∫ s

0

//−1
t K(p(ut)) ◦ dBt.
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Assume now the parallel translation on [kerX(x)⊥ is that given in section 3.2. Since
dxt = X(xt)K⊥(xt) ◦ dBt +X0(xt)dt, the following filtrations are equal:

σ{xu : 0 ≤ u ≤ s} = σ{B⊥u : 0 ≤ u ≤ s}.

The horizontal lifting map induced by the pair (A,B) is given as following:

hu(v) = X̃(u)Y (π(u)v), u ∈ Tp(u)M,

From which we obtain the horizontal lift XH (u) of the bundle map X:

XH (u) = X̃(u)K⊥(p(u))

and it follows that

dut = X̃(ut)K⊥(p(ut)) ◦ dBt + X̃(ut)K(p(ut)) ◦ dBt + X̃0(ut)dt
= XH (ut) ◦ dBt + X̃(ut)K(p(ut)) ◦ dBt + X̃0(ut)dt
= hut ◦ dxt + X̃(ut)K(p(ut)) ◦ dBt + (X̃0 −XH

0 )(ut)dt

If this equation is linear in ut it is possible to compute the conditional expectation of ut
with respect to σ{xu : 0 ≤ u ≤ s} as in the derivative flow case (section 2.8 below).
This discussion is continued at the end of the article.

3.5 The diffeomorphism group example
If M is a compact smooth manifold and X is smooth we may consider an equation
on the space of smooth diffeomorphisms Diff(M ). Define X̃(f )(x) = X(f (x)) and
X̃0(f )(x) = X0(f (x)) and consider the SDE on Diff(M ):

dft = X̃(ft) ◦ dBt + X̃0(ft)dt

with f0(x) = x. Then ft(x) is solution to dxt = X(xt) ◦ dBt with initial point x.
Fix x0 ∈ M , we have a map θ : Diff(M ) → M given by θ(f ) = f (x0). Let

B = 1
2LX̃i

LX̃i
and A = 1

2LXiLXi . Then

hf (v)(x) = X̃(f ) (Y (f (x0))v) (x) = X(f (x))(Y (f (x0))v).

3.6 The twist effect
Consider the polar coordinates in Rn, with the origin removed. Consider the con-
ditional expectation of a Brownian motion Wt on Rn on |Wt| where |Wt|, and n-
dimensional Bessel Process, n > 1, lives in R+. For n = 2 we are in the situation
that p : R2 → R given by p : (r, θ) 7→ r. The B and A diffusion are the Laplacians,
AH = ∂2

∂r2 . The map p(r, θ) = r2 would result the lifting map v ∂
∂x 7→ ( v2r , 0) = v

2r
∂
∂r .

At this stage we note that if Bt is a one dimensional Brownian motion, lt the local
time at 0 of Bt and Yt = |Bt| + `t, a 3-dimensional Bessel process starting from 0.
There is the following beautiful result of Pitman:

E{f (|Bt|)|σ(Ys : s ≤ t)} =
∫ 1

0

f (xYt)dx = V f (Yt)
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where V is the Markov kernel: V (x, dz) = 10≤z≤x

x dz [23, 4].
A second example, [13], which demonstrates the twist effect is on the product space

of the circle. Let p : S1×S1 → S1 be the projection on the first factor. For 0 < α < π
4 ,

define the diffusion operator on S1 × S1:

B =
1
2
( ∂2

∂x2
+

∂2

∂y2
) + tanα

∂2

∂x∂y
.

and the diffusion operator A = 1
2
∂2

∂x2 on S1. Then

BV =
1
2

(1− (tanα)2)
∂2

∂y2

AH =
1
2

(
∂2

∂x2
+ (tanα)2

∂2

∂y2
) + tanα

∂2

∂x∂y
.

4 Applications

4.1 Parallel Translation
Let P = GLM , the space of linear frames on M with an assignment of metrics on
the fibres. The connection on P is said to be metric if the parallel translation preserves
the metric on the fibres. A connection on P reduces to a connection on the sub-bundle
of oriented orthonormal frame bundles OM , i.e. the horizontal lifting belongs to OM
if and only if it is metric. Let F = P × Rn/ ∼ be the associated vector bundle
determined by the equivalent relation [u, e] ∼ [ug, g−1e] hence the vector bundle is
{ue} where e ∈ Rn, u ∈ P . A section of F corresponds to a vector field over M . A
parallel translation is induced on TM in the obvious way and given a connection on
P let H(e) be the standard horizontal vector field such that H(e)u is the horizontal lift
through u of the vector u(e). If e 6= 0, H(e) are never vanishing vector fields such
that TRa(H(e)) = H(a−1e). The fundamental vector fields generated by a basis of
gl(n,R) and H(ei) for ei a basis of Rn forms a basis of TP at any point and gives a
global parallelism on TP .

If we have a curve σt with σ0 = x and σ̇0 = v,

∇vY = lim
ε→0

1
ε

[//−1
ε Y (σε)− Y (x)].

Alternatively ∇XY (x) = u0(X̃f ) where X̃ is a horizontal lift of X , f : P → Rn is
defined by f (u) = u−1[Y (π(u))] and

X̃f (u0) = lim
h→0

1
h

(u−1
h Y (σh)− u−1

0 Y (x))

for uh a horizontal lift of xt starting from u0. Note that the linear maps Mx(e) which
defines the connection form on TP are skew symmetric in the case of P = OM , and
determines the Christoffel symbols. A vector field Y is horizontal along a curve σt
if ∇σ̇(t)Y = limh→0

1
h [//−1

h Y (σh) − Y (x)] = 0. Define the curvature form to be
the 2-form Ω(−,−) := dω(Ph−, Ph−) where Ph is the projection to the horizontal
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space. Then the horizontal part of the Lie bracket of two horizontal vector fields X,Y
is the horizontal lift of [π(X), π(Y )] and its vertical part is determined by ω([X,Y ]) =
−2Ω(X,Y ).

The horizontal lift map ut can also be thought of solutions to:

dut =
∑

H(ei)(ut) ◦ dσt.

In fact if v̇t is the horizontal lift of σ̇t, v̇t =
∑n
i=1 〈σ̇t, ei〉H(ei)(σ̃t). Now //t(σ) is not

a solution to a Markovian equation, the pair (//t(σ), ut) is. In local coordinates for vit
the ith component of //t(σ)(v), v ∈ Tσ0M ,

dvkt = −Γki,j(σt)v
j
t ◦ dσit. (4.1)

If σt is the solution of the SDE dxkt = Xk
i (xt) ◦ dBit +Xk

0 (xt)dt then

dvkt = −Γki,j(xt)v
j
tX

k
i (xt) ◦ dBit − Γki,j(xt)v

j
tX

k
0 (xt)dt.

4.2 How does the choice of connection help in the case of the derivative flow?
One may wonder why a choice of a linear connection removes a martingale term in a
SDE? The answer is that it does not and what it does is the careful choice of a matrix
which transforms the original objects of interest. Recall the differentiation formula:

d(Ptf )(v) = Edf (Xv
t )

where for each t, Xv
t is a vector field with X(x) = v. The choice of Xv

t is by no
means unique. Both the derivative flows and the damped parallel translations are valid
choices and the linear connection which is intrinsic to the SDE leads to the correct
choice. To make this plain let us now consider Rn as a trivial manifold with the non-
trivial Riemannian metric and affine connection induced by X . In components, let Ui
be functions on Rn and U = (U1, . . . , Un) and x0, v ∈ Rn,

(∇̆vU )k(x0) = (DUk)x0 (v) +
∑
j

〈X(x0)D(Y (x)(ej), ek〉(v)Ujek.

The last term determines the Christoffel symbols, c.f. [15].
Given a vector field along a continuous curve there is the stochastic covariant dif-

ferentiation defined for almost surely all paths, given by D̂Vt = /̂/t
d
dt (/̂/t)

−1Vt where
/̂/t is the stochastic parallel translation using the connection ∇̂, the adjoint connection
to ∇̆ to take into account of the torsion effect. Alternatively

(D̂Vt)k =
d

dt
V kt + Γkji(σt)V

j
t ◦ dσit.

The derivative flow Vt = Tξt(v0) satisfies the SDE:

D̂Vt = ∇̆Xj(Vt) ◦ dBjt + ∇̆X0(Vt)dt.
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Let V̄t = E{Vt| xs : 0 ≤ s ≤ T}. Then

D̂V̄t = −1
2

(R̆ic)#(V̄t)dt+∇X0(V̄t)dt.

In the setting of the Wiener space Ω and I = ξ·(x0) the Itô map, let Vt = TIt(h) for h
a Cameron Martin vector then

D̂Vt = ∇̆Xj(Vt) ◦ dBjt + ∇̆X0(Vt)dt+X(xt)(ḣt)dt

and the corresponding conditional expectation of the vector field Vt satisfies

D̂V̄t = −1
2

(R̆ic)#(V̄t)dt+ ∇̆X0(V̄t)dt+X(xt)(ḣt)dt.

This means, /̂/−1
t V̄t is differentiable in t and hence a Cameron-Martin vector and V̄t is

the induced Bismut-tangent vector by parallel translation.

4.3 A word about the stochastic filtering problem
Consider the filtering problem for a one dimensional signal process x(t) transmitted
through a noise channel

dxt = α(xt)dt+ σ dWt

dyt = β(xt)dt+
√
adBt

where Bt and Wt are independent Brownian motions. The problem is to find the prob-
ability density of x(t) conditioned on the observation process y(t) which is closely
associated to the following horizontal lifting problem.

Let B and A be intertwined diffusion operators. Consider the martingale problems
on the path spaces, Cu0N and Cy0M , on N and M respectively. Let ut and yt be
the canonical process on N and on M , assumed to exist for all time, so that for f ∈
C∞c (M ) and g ∈ C∞c (N )

Mdf,A
t : = f (yt)− f (y0)−

∫ t

0

Af (ys)ds

Mdg,B
t : = g(ut)− g(u0)−

∫ t

0

Bg(us)ds

are martingales. For a σ{ys : 0 ≤ s ≤ t}-predictable T ∗M -valued process φt which
is along yt we could also define a local martingale Mφ,A

t by

〈Mφ,A
t ,Mdf,A

t 〉 = 2
∫ t

0

df (σA(φ))(ys)ds.

It is also denoted by

Mφ,A
t ≡

∫ t

0

φsd{ys}.



APPLICATIONS 17

The conditional law of ut given yt is given by integration against function f from
N to R, define

πtf (u0)(σ) = E
{
f (ut)|p(u·) = σ

}
. (4.2)

This conditional expectation is defined for PAp(u0), the A diffusion measures, almost
surely all σ and extends to φt ◦ hut for φt as before and h the horizontal lifting map.
The following is from Theorem 4.5.1 in [13].

Theorem 4.1 If f is C2 with Bf and σB(df, df ) ◦ h bounded, then

πtf (u0) = f (u0) +
∫ t

0

πs(Bf )(u0)ds+
∫ t

0

πs(df ◦ hu· )(u0)d{ys}. (4.3)

To see this holds, taking conditional expectation of the following equation:

f (ut) = f (u0) +
∫ t

0

Bf (us)ds+Mdf,B
t

and use the following theorem, Proposition 4.3.5 in [13],

E{Mdf,B
t |p(u·) = x·} = M

E{df◦hus |p(u·)=x·},A
t .

In the case that p : M×M0 →M is the trivial projection of the product manifold to
M , let A be a cohesive diffusion operator on M , L the diffusion generator on M0 and
ut = (yt, xt) aB diffusion. If xt is a Markov process with generatorL andB a coupling
of L and A, by which we mean that B is intertwined with L and A by the projections
pi to the first or the second coordinates, there is a bilinear ΓB : T ∗M × T ∗M0 → R
such that

B(g1 ⊗ g2)(x, y) = (Lg1)(x)g2(y) + g1(x)(Ag2)(y) + ΓB((dg1)x, (dg2)y) (4.4)

where g1 ⊗ g2 : M × M0 → R denotes the map (x, y) 7→ g1(x)g2(y) and g1, g2

are C2. In fact ΓB((dg1)x, (dg2)y) = σB(x,y)(dg̃1, dg̃2) where g̃i = g(pi). Then σB :
T ∗M1×T ∗M2 → TM1×TM2 is of the following form. For `1 ∈ T ∗xM1, `2 ∈ T ∗yM2

σB(x,y)(`1, `2) =

(
σLx σ1,2

(x,y)

σ2,1
(x,y) σAx

)(
`1
`2

)
.

The horizontal lifting map is given by

v 7→ (v, α ◦ (σA)−1(v))

where α : TxM∗ → TyM0 are defined by

`2(α(`1)) =
1
2

ΓB(`1, `2).
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In the theorem above take 1⊗ f to see that πsB(1⊗ f ) reduces to Lf and the filtering
equation is:

πtf (x0) = f (x0) +
∫ t

0

πs(Lf )(x0)ds+
∫ t

0

πs(df (α ◦ (σA)−1))(x0)d{ys}.

The case of non-Markovian observation when the non-Makovian factor is intro-
duced through the drift equation for the noise process yt can be dealt with through a
Girsanov transformation. See [13] for detail. Finally we note that the field of stochas-
tic filtering is vast and deep and we did not and would not attempt to give historical
references as they deserve. However we would like to mention a recent development
[5] which explore the geometry of the signal-observation system. See also [16], [17],
[14] and recent work of T. Kurtz .
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