
Introduction

The concepts of second order semi-elliptic operator, Markov semi-group, diffu-
sion process, diffusion measures on path spaces essentially give different pictures
of the same fundamental objects, with related Riemannian or sub-Riemannian
geometry. Here we consider a different layer of structure centred around the
concepts of sums of squares of vector fields, stochastic differential equations,
stochastic flows and Gaussian vector fields; again essentially equivalent, and this
time with associated metric linear connections on tangent bundles and subbun-
dles of tangent bundles. The difference between these two levels of structure
can be seen from the fact that if a semi-elliptic differential operator on functions
on a manifold M is given a representation as a sum of square of vector fields
(“Hörmander form”) it automatically gets an extension to an operator on differ-
ential forms. In exactly the same way representing a diffusion process as the one
point motion of a stochastic flow determines a semi-group acting on differential
forms (by pulling the form back by the flow and taking expectation.) Given a
regularity condition there is an associated linear connection and adjoint ‘semi-
connection’ in terms of which these operators can be simply described (e.g. by
a Weitzenbock formula) as can many other important quantities (e.g. existence
of moment exponents for stochastic flows). Moreover in the stochastic picture
the connections remain relevant in the collapse from this level to the simpler one
giving new results and new proofs of results e.g. on path space measures.

In more detail: Chapter 1 is connected with the construction of linear connec-
tions of vector bundles as push forwards of connections on trivial bundles. This
is a direct analogue of the classical and elementary construction of the covariant
derivative of a vector field on a submanifold of Euclidean space, leading to the
Levi-Civita connections (Example 1B). Narasimhan & Ramadan’s theorem of
universal connections is evoked to assure us that all metric connections can be
obtained this way (Theorem 1.1.2). We then go on to consider the various forms
in which this construction will appear in situations described above. (E.g. how
certain Gaussian fields of sections determine a connection.) Homogeneous spaces
give a good class of examples described in some detail in §1.1 B. The notion of
adjoint connection or semi-connection on a subbundle E of the tangent bundle
TM to our underlying manifold M is described in §1.3. A semi-connection allows
us to differentiate vector fields on M in E-directions. They play an important
role in the theory. One difficulty is that the adjoint of a metric connection may
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not be metric for any metric (Corollary 1.3.7). In general Hörmander type hy-
poellipticity conditions on our generator A, or equivalently on E, play little role
in this article. However in Theorem 1.3.9 we show how they are related to the
behaviour of parallel translations with respect to associated semi-connections.

In chapter 2 we concentrate on a generator A given in Hörmander form, and
its associated stochastic differential equation (s.d.e.). A first result is Theorem
2.1.1 which shows in particular that (for dimM > 1) any elliptic diffusion oper-
ator can be written as a sum of squares with no first order term, or equivalently
that any elliptic diffusion is given by a Stratonovich equation with no drift term.
The extension Aq of A to q-forms is shown to have the form Aq = −(dδ̂ + δ̂d)
for a certain operator δ̂ from q-forms to q− 1 forms (Proposition 2.3.1) and also
a Weitzenbock form Aq = 1

2 trace∇̂2 − 1
2Rq (if there is no drift term A) (Theo-

rem 2.4.2). Driver’s notion of torsion skew symmetry is investigated in §2.2 in
order to discuss the operators δ̂, and when they are L2 adjoints of the exterior
derivative d, in §2.3. Later, §3.3.3, the semigroups associated to these operators
are used to obtain Böchner type vanishing theorems under positivity conditions
on Rq.

The question of the symmetricity of Aq with respect to some measure on M
is discussed in §2.5.2. Theorem 2.5.1 gives a fairly definitive result for Aq with
the zero order terms removed. However conditions under which Rq is symmetric
seem not so easy to find if q > 1. For q = 1 this reduces to symmetricity of the
Ricci curvature R̆ic which is shown in Proposition C.6 of the Appendix to hold
in the torsion skew symmetric case if and only if the torsion tensor T̆ determines
a coclosed differential 3-form, c.f. [Dri92]. These sections are not used later in
this article.

The main applications in stochastic analysis start with Chapter 3. The basic
idea is that the diffusion coefficient of an s.d.e often has a kernel: so that there
is “redundant noise” from the point of view of the one point motion. We ex-
tend the results from the gradient case in [EY93] to our more general, possibly
degenerate, situation giving a canonical decomposition of the noise into its re-
dundant and non-redundant parts. We then show how this can be used to filter
out the redundant noise in general situations. (This filtering out corresponds
to the collapse in levels of structure mentioned above.) On the way we have to
discuss conditional expectations of vector fields along the sample paths of our
process, Definition 3.3.2. All this is done in some generality, e.g. allowing for the
possibility of explosion. The main application is to the derivative process Tξt of
a stochastic flow: Theorem 3.3.7 and Theorem 3.3.8. When the redundant noise
is filtered out the process becomes a “damped’ or Dohrn-Guerra type parallel
translation using the associated semi-connection. This procedure works equally
for the derivative of the Itô map ω #→ ξt(x0)(ω) in the sense of Malliavin Calculus
from which follow integration by parts theorems for possibly degenerate diffu-
sion measures, Theorem 4.1.1. For gradient systems, using [EY93], this method
was used by [EL96] and was suggested by [AE95]. The Levi-Civita connection
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appears in that case (which is why gradient systems behave so nicely), but in the
degenerate case which is allowed here the connections are on arbitrary subbun-
dles of TM and there is no unique particularly well behaved connection to use.
Hypoellipticity is not assumed. The “admissible” vector fields are those which
satisfy a natural “horizontality” condition, §4.1 B and §4.1 C. Closely related
is a Clark-Ocone formula (Theorem 4.1.2) expressing suitably smooth functions
on path space as stochastic integrals with respect to the predictable projection
of their gradient. From this we use the method given in [CHL97] to obtain a
Logarithmic Sobolev inequality for our diffusion measures, Theorem 4.2.1. Our
“damping” of the parallel translation means that no curvature constants appear:
indeed since in general we have no Riemannian metric given on M it would be un-
natural to have such constants. Logarithmic Sobolev inequalities automatically
imply spectral gap inequalities and the constancy of functionals with vanishing
gradient (or equivalently whose derivatives vanish on admissible vector fields),
Corollary 4.1.3: a non-trivial result even for Frechet smooth functions on path
space for the case of degenerate diffusions. In Theorem 4.1.1 the correspond-
ing results are proved for the measures on paths on the diffeomorphism group
DiffM of M coming from stochastic flows, or equivalently from Wiener processes
on DiffM [Bax84].

Chapter 5 is concerned with applications to stability properties of stochastic
flows. In particular upper and lower bounds for moment exponents are obtained
in terms of the Weitzenbock curvatures of the associated connection and a gen-
eralization of the second fundamental form to our situations: Theorem 5.0.5.
This gives a criterion for moment stability in terms of ‘stochastic positivity’ of
a certain expression in the quantities with consequent topological implications:
Corollary 5.0.6.

A weakness of these results is that we usually require the adjoint semi-
connection to be metric for some metric. Theorem 5.0.7 shows that the lack
of this condition really is reflected in the behaviour of the flow.

Chapter 6 consists of technical appendices. The first gives a detailed de-
scription of how the push forward construction of connections we use relates
to Narasimhan & Ramanan’s pull back of the universal connections. This is
needed in the proof of Theorem 1.1.2. The other appendices give the notation
of annihilation and creation operators used in the discussion of the Weitzenbock
curvatures in section 2.4 and some basic formulae and curvature calculations for
connections given in the L-W form.

The connection determined by a non-degenerate stochastic flow first appeared
in [LJW84]: for this reason we have called it the LeJan-Watanabe or L-W con-
nection. It was also discovered in the context of quantum flows in [AA96] and for
sums of squares of vector fields in [PVB96]. It is used for analysis on loop spaces
in [Aid96]. For the non-degenerate case many of the results given here were de-
scribed in [ELJL97] with announcements for degenerate situations in [ELJL96].



6 Introduction

They were stimulated by [EY93]. The Chentsov-Amari α-connections in statis-
tics are rather different. They are in general non-metric if α %= 0 and torsion
free, see [Ama85], pp42, 46.
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