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Chapter 1

Introduction

1.1 Introduction

A stochastic process describes the evolution in time of a stochastic system. For discrete times

we tend to use the notation (xn) where n = 0, 1, 2, . . . . The ‘randomness’ comes from the lack

of complete information about the system.

We will have:

• an underlying probability space: (Ω,F ,P),

• a state space X ,

• the Borel σ-algebra B(X ).

The state space, which we denote by X , will be assumed to be a separable complete metric

space. The Euclidean spaces Rn are separable complete metric spaces, so can be open sets of

Rn be given a complete metric space which is separable.

A (discrete time) stochastic process (xn) is a collection of random variable on some probability

space, where n is perceived as time. The ‘time’ in a continuous time process (xt) takes values

in an interval. We focus mainly on the case of discrete time processes and therefore give the

definition below.

A sample of a process is a function of time (a sequence), by the random nature, we cannot say

much about a sample, we can say something about any statistics of its observables, which can

be deduced with its probability distributions. To obtain informations on a stochastic process,

for example the averages of an observable of the process, e.g E[f(xn)], one assumes naturally

that the xn’s are random variables.

9



1.1. INTRODUCTION 10

Definition 1.1.1 A stochastic process x with state space X is a collection {xn}∞n=0 of X -

valued random variables on some probability space (Ω,F ,P). Given n, we refer to xn as the

value of the process at time n. We will sometimes consider processes where the time X -valued

random variables can take negative values, i.e. {xn}n∈Z.

If the time index I is an interval, then a stochastic process (xt) where t ∈ I is again a collection

of {xt, t ∈ I}, on which we often make regularity assumptions in t.

Recall that a random variable X : Ω → X is simply a measurable map, its probability

distribution is the pushed forward measure X∗(P):

X : Ω −→ X
P 7→ X∗P

.

An example of a sequence of random variables are independent random variables. In general,

the random variables are correlated, how are the random variables correlated? More importantly

how does one deduce information on a future time xt from its past up to time s where s < t?

A Markov process describes the time-evolution of random systems that do not have any

memory. Let us demonstrate what we mean by memoryless with the following example. Consider

a switch that has two states: on and off. At the beginning of the experiment, the switch is on.

Every minute after that, we throw a dice. If the dice shows 6, we flip the switch, otherwise

we leave it as it is. The state of the switch as a function of time is a Markov process. This

very simple example allows us to explain what we mean by “does not have any memory”. It is

clear that the state of the switch has some memory in the sense that if the switch is off after

10 minutes, then it is more likely to be also off after 11 minutes, whereas if it was on, it would

be more likely to be on. However, if we know the state of the switch at time n, we can predict

its evolution (in terms of random variables of course) for all future times, without requiring any

knowledge about the state of the switch at times less than n. In other words, the future of

the process, given the present, is independent of the past.

The following is an example of a process which is not a Markov process. Consider again a

switch that has two states and is on at the beginning of the experiment. We again throw a dice

every minute. However, this time we flip the switch only if the dice shows a 6 but didn’t show

a 6 the previous time.

Let us go back to our first example and write x
(n)
1 for the probability that the switch is on at

time n. Similarly, we write x
(n)
2 for the probability of the switch being off at time n. One then

has the following recursion relation:

x
(n+1)
1 = f56x

(n)
1 +

1

6
x

(n)
2 , x

(n+1)
2 =

1

6
x

(n)
1 +

5

6
x

(n)
2 , (1.1)

with x
(0)
1 = 1 and x

(0)
2 = 0. The first equality comes from the observation that the switch is on

at time n + 1 if either it was on at time n and we didn’t throw a 6 or it was off at time n and
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we did throw a 6. Equation (1.1) can be written in matrix form as

x(n+1) = Tx(n) , T =
1

6

(
5 1

1 5

)
.

We note that T has the eigenvalue 1 with eigenvector (1, 1) and the eigenvalue 2/3 with eigen-

vector (1,−1). Note also that x
(n)
1 + x

(n)
2 = 1 for all values of n. Therefore we have

lim
n→∞

x
(n)
1 =

1

2
, lim

n→∞
x

(n)
2 =

1

2
.

We would of course have reached the same conclusion if we started with our switch being off at

time 0.

1.1.1 Evolution of probability distributions

The transitions

x0 → x1 → x2 → . . .

induce a family of probability measures on the state space. There are many interesting questions

on Markov processes. We are concerned with the following:

1.1.2 Questions

What is the probability that the Markov chain visit state j at time n given that x0 = i? Does

the time n distribution of (xn) converge to some measure as n → ∞? In what sense does it

converge? What distance does one put on the space of probability measures? At what speed

does the convergence happen?

Is there an initial probability distribution µ, such that for each n, xn is distributed as x0?

Definition 1.1.2 A measure π is called an invariant (probability) measure (invariant distribu-

tion ) for a Markov chain if L(Xn) = π for any n.

We have discussed whether µn = (xn)∗P→ π, does the distribution of the stochastic process on

XZ+ converge to that of the chain with an invariant initial distribution π? If exists, is such an

invariant distribution unique? Starting from different initial distributions, do the Markov chain

look alike after some time? If Pnx and Pny denote the probability distributions of the chain at

time n with initial points x, y, does the two probability measures get close? In other words

|Pnx − Pny | → 0?

What are the techniques for studying these problems? If we denote by Pµ the probability of

the chain with initial µ, we ask Pµ → Pπ?
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Ergodic theorems: does it hold?

1

n

n−1∑
k=0

f(xk)→
∫
X
fdπ?

Let θ(ω)k = ωk+1, this induces a shift on the sequences,

1

n

n−1∑
k=0

F (xk, xk+1, . . . , )→
∫
XZ+

F dPπ?

If x0, ξ1, ξ2 are independent random variables on R with x0 ∼ N(0, a) and ξi ∼ N(0, b) for

all i = 1, 2, . . . . Define for a positive number M > 0,

M(xn+1 − xn) = −xn + ξn+1.

It is an easy exercise to find an invariant measure for this Markov chain. See 6.2.5.

Exercise 1.1.1 Find out whether there is an invariant measure for the switch Markov process.



Chapter 2

The Markov property

The Markov property states that given information on its present, any further information on

its history does not improve the estimates on the whereabout of the process at a future time.

A stochastic process describes the evolution of a random system. The ‘randomness’ describes

the lack of complete information about the system. We have the set=up:

• an underlying probability space: (Ω,F ,P), e.g. ([0, 1],B([0, 1]), dx).

• a state space X , a separable complete metric space.

• the Borel σ-algebra B(X ).

Definition 2.0.1 A stochastic process (xn) is simply a collections of random variables.

Discrete time stochastic process: the time I set is N, or N0, or Z. Continuous time Markov

process : I = R+, [0, 1].

Given a stochastic process (xn), we study the evolution of L(xn), among other topics.

Each xn is a measurable map,

xn : Ω −→ X .
ω −→ xn(ω)

Its probability distribution, denoted by L(xn), is the measure obtained by pushing P forward

by xn defined below:

(xn)∗P(A) := P
(
{ω : xn(ω) ∈ A}

)
.

How are {x0, x1, xn} correlated? They are independent if L((x0, . . . , xn)) = ⊗ni=1L(xn). In

general we do not expect them independent.

13
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2.1 Information and Filtration

Definition 2.1.1 The information on the stochastic process at time n is the σ-algebra of all

possible events at this time:

σ(Xn) = σ
({
x−1
n (A) : A ∈ B(X )

})
.

The set A runs through the Borel subsets of X and x−1
n (A) := {ω : xn(ω) ∈ A}.

If P(xn = ±1) = 1
2 , the collection of sets

{Xn = 1}, {Xn = −1}, φ, Ω

contain all the information we can possibly have on the random variable.

Definition 2.1.2 Let σ(x0, . . . , xn) denote the σ-algebra generated by the random variables

inside the bracket, it is generated by sets of the form:{
x0 ∈ A0, . . . xn ∈ An

}
,

where Ai ∈ B(X ). This is the smallest σ-algebra such that each of the random variables are

measurable.

The information on the process (xn) up to time n is the σ algebra generated x0, . . . , xn.

Definition 2.1.3 • A family of σ-algebras {Fn}n≥0, satisfying Fn ⊂ Fm whenever n < m

and Fn ⊂ F , is a filtration (of σ-algebras).

• A stochastic process xn is said to be adapted to a filtration Fn if for every n, xn is

measurable with respect to Fn.

• The filtration Fx·n := σ(x0, . . . , xn) is the natural filtration for (xn).

The natural filtration is the smallest filtration to which the process is adapted.

2.2 The Markov Property

Definition 2.2.1 A stochastic process (xn) with state space X is said to have the Markov

property (with respect to its natural filtration) if for any Borel measurable set A of X , any

n ≥ 0,

P(xn+1 ∈ A | x0, . . . xn) = P(xn+1 ∈ A | xn) a.s.
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The distribution of the random variable x0 is called the initial distribution. Discrete time Markov

processes are also called Markov chains.

Notation.

P(xn+1 ∈ A |x0, . . . xn) := P(xn+1 ∈ A | σ(x0, . . . xn)).

Intuitively, the best estimates based on information obtained from x0, x1, . . . , xn, is the same as

the best estimates based on information obtained from xn alone.

2.2.1 Conditional expectation

Definition 2.2.2 Let X be a real-valued random variable on some probability space (Ω,F ,P)

such that E|X| <∞ and let F ′ be a sub σ-algebra of F . Then the conditional expectation

of X with respect to F ′ is a F ′-measurable random variable X ′ such that∫
A
X(ω)P(dω) =

∫
A
X ′(ω)P(dω) , (2.1)

for every A ∈ F ′. We denote this by X ′ = E(X | F ′).

Proposition 2.2.3 With the notations as above, the conditional expectation X ′ = E(X | F ′)
exists and is essentially unique (in the sense any two such variables are equal almost surely).

Proof. Denote by ν the restriction of P to F ′ and define the measure µ on (Ω,F ′) by µ(A) =∫
AX(ω)P(dω) for every A ∈ F ′. It is clear that µ is absolutely continuous with respect to ν. Its

density with respect to ν given by the Radon-Nikodym theorem is then the required conditional

expectation. The uniqueness follows from the uniqueness statement in the Radon-Nikodym

theorem.

Notation. If A ∈ F we define:

P(A |F ′) := E
(
1A |F ′

)
.

Also if F ′ = σ(Y ), is the σ-algebra generated by a random variable Y . Then we use the notation:

E(X|Y ) := E(X |σ(Y )).

Exercise 2.2.1 Show that a stochastic process (xn) with state space X satisfies the simple

Markov property if and only if the following holds for any bounded measurable functions f :

X → R such that

E(f(xn+1)|σ(x0, . . . , xn)) = E(f(xn+1)|xn). (2.2)
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Example 2.2.1 Let F ′ = {A,Ac, φ,Ω}. Recall: E(X|A) = E(X1A)
P(A) .

E(X|F ′)(ω) =

{
E(X|A), if ω ∈ A

E(X|Ac), if ω ∈ Ac.

If Y is a random variable on Y, then E(X|Y ) = ϕ(Y ) for some Borel measurable function

ϕ : Y → R. We write E(X|Y = y) for the function ϕ(y).

Example 2.2.2 Suppose that Y takes values in a state state space in which case we identify it

with N.

E(X|Y )(ω) =
∑

i:P({Y=i})>0

E(X|{Y = i})1{Y=i}(ω).

i.e. ϕ(i) = E(X|{Y = i}). This justify the notation:

E(X|Y = i) := E(X|{Y = i}).

2.2.2 Markov property on discrete state space

If xn has only a finite number of a countable number of states, then we can define the Markov

property using elementary probabilities: P(A|B) := P(A∩B)
P(B) when P (B) 6= 0.

If X is a discrete state space, a space with at most a countable number of elements, in which

case we may let X = N. Let (xn) be a stochastic process on a discrete state space X . The above

discussion allows us to reduce the Markov property

P(xn+1 ∈ A | x0, . . . xn) = P(xn+1 ∈ A | xn) a.s.

to a simpler expression. The Markov property is equivalent to the following: for any n = 1, 2, . . .

and for any s1, . . . sn+1 ∈ X such that P(x0 = s0, . . . , xn = sn) > 0, we have

P(xn+1 = sn+1|x0 = s0, . . . , xn = sn) = P(xn+1 = sn+1|xn = sn).

We may omit mentioning the condition P(x0 = s0, . . . , xn = sn) > 0.

Notation:

{xn = k} = {ω : xn(ω) = k}, {x0 = s0, . . . , xn = sn} = ∩ni=0{xi = si}.

The event we are conditioning on is:

{ω : x0(ω) = s0, . . . , xn(ω) = sn}

If X is a general complete separable metric space with its Borel σ-algebra, it is conceivable

that P(xn = s) = 0 for any s ∈ X , and so the elementary probability formulation may fail.
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2.2.3 A random dynamical system

We first give a proof for a discrete state space, in this case a more elementary proof is available

to us.

Example 2.2.3 Suppose that X is a discrete space and (Y,G) a measurable space. Let F :

X × Y → X be a measurable map. Suppose that (ξn) are independent random variables with

state space Y, and is independent of x0, (In other words, x0, ξ1, ξ2, . . . are all independent). Set

xn+1 = F (xn, ξn+1), n ≥ 0.

Then (xn) is a Markov chain.

Proof. Let X = N, xn = F (xn−1, ξn). Then,

P(xn+1 = j | x0 = i0, . . . xn = in)

=P(F (xn, ξn+1) = j | x0 = i0, . . . xn = in)

=P(F (in, ξn+1) = j | x0 = i0, . . . xn = in)

=P
(
F (in, ξn+1) = j

)
.

In the final line we use the fact that ξn+1 is independent of {x0, x1, . . . , xn}, and hence the

independence of ξn+1 from x0, . . . , xn. Similarly,

P(xn+1 = j | xn = in) = P(F (xn, ξn+1) = j | xn = in) = P
(
F (in, ξn+1) = j |xn = in

)
=P
(
F (in, ξn+1) = j

)
.

The Markov property holds.

One can also compute, opening up the conditioning as below:

P(xn+1 = in+1|x0 = i0, . . . , xn = in) =
P(xn+1 = in+1, x0 = i0, . . . , xn = sn)

P(x0 = i0, . . . , xn = in)

=
P(F (xn, ξn+1) = in+1, x0 = i0, . . . , xn = in)

P(x0 = i0, . . . , xn = in)

To give a proof for other state spaces, we recall the following

Exercise 2.2.2 Let X : Ω → X and Y : Ω → Y be random variables with X measurable with

respect to G ⊂ F and Y is independent of G. If ϕ : X × Y → R is a measurable function such

that ϕ(X,Y ) is integrable, then

E(ϕ(X,Y )|G)(ω) = E(ϕ(X(ω), Y ), a.s.
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Example 2.2.4 Suppose that {ξ1, ξ2, . . . } are independent with state space Y and independent

of x0 on a state space X . Let F : X ×Y → X be a measurable function and define xn recursively

as follows:

xn = F (xn−1, ξn).

Then (xn) is a Markov process.

Proof. Let A be an arbitrary set from B(X ). We only need to show that P
(
xn+1 ∈ A |x0, . . . xn

)
,

is σ(xn) measurable in which case, since on any A ∈ σ(xn) ⊂ σ(x0, . . . , xn), its average and the

average of xn+1 are the same, it satisfies the requirement for P
(
xn+1 ∈ A |xn

)
. Then, by the

uniqueness of the conditional expectations, it is P
(
xn+1 ∈ A |xn

)
.

For any A ∈ B(X ), we set ϕ(x, y) = 1A(F (x, y)). Then,

P
(
xn+1 ∈ A |x0, . . . xn

)
(ω)

= E
(
1A(F (xn, ξn+1)) |x0, . . . xn

)
(ω) = E

(
1A(F (xn(ω), ξn+1)

)
.

Set Y (ω) = E
(
1A(F (xn(ω), ξn+1)

)
. Let µn+1 denote the probability distribution of ξn+1, set

g(x) =
∫
Y 1A

(
F (x, y)

)
µ(dy). Then,

Y (ω) =

∫
Y

1A
(
F (xn(ω), y)

)
µ(dy) = g(xn(ω)).

This concludes that E
(
1A(F (xn(ω), ξn+1) |x0, . . . xn

)
is σ(xn) measurable, completing the proof.

This proof covers of course the previous example.

2.2.4 Random walk on Z and and on Z+

Let Sn =
∑n

i=1 ξi where ξi are i.i.d.’s with

P(ξi = 1) = p, P(ξi = −1) = 1− p.

Then Sn+1 = Sn + ξn+1. Note that S0 = 0. Then

P(Sn+1 = k|S1 = i1, . . . , Sn = in)

= P(ξn+1 = k − in)

=


p, k = in + 1,

1− p, k = in − 1,

0, otherwise.

A similar computation shows that P(Sn+1 = k|Sn = in) gives the same value.

The following model is used in queuing theory.
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Exercise 2.2.3 Random walk on Z+. Let ξn be i.i.d.’s with distribution µ and state space R.

Set

xn = [xn−1 + ξn]+.

Compute the transition probabilities P(xn+1 = j|xn = i).

2.2.5 A non-Markov random walk

We have used in an essential way of the independence of ξi for proving the Markov property of

the random walk. What happens if we remove the independence.

Let us take ξ1 and ξ2 be independent with

P(ξi = 1) =
1

2
, P(ξi = −1) =

1

2
.

Set for n > 2,

ξn+1 =

{
1, if ξn = 1,

{±1} with probability 1
2 , if ξn 6= 1.

This walk {Sn} is not a Markov process.

2.2.6 Examples

1. A Markov chain moves to the next step according to the probability distribution determined

by its current position. For example let us move a chess piece on an empty chessboard in

the following manner: it moves to one of its nearest neighbours in equal probability. This

is a Markov chain with state space X = {s1, s2, . . . s64}, each state is one of the 64 squares.

2. Similarly the solution of the ODE ẋt = f(xt) is a deterministic Markov process: given the

initial point at the initial time we know its future value xt = x +
∫ t
s f(xr)dr, we do not

need to know its value before the initial time s.

3. Any deterministic sequence xn satisfies the simple Markov property. The information on

a deterministic random variable is trivial: {φ,Ω}. Note that

B := {x0 ∈ A0, . . . , xn−1 ∈ An−1}

has probability 1 or 0. When B has non-zero probability, knowing it does not add any

information on xn ∈ A. Take for example, xn ≡ 1. We know its value, there is no need to

evaluate its past events. In fact, P(xn ∈ A|x0, . . . , xn−1) = δyn(A) (I use yn for the value of

xn to make the distinction.) If the values of the deterministic process are all different, this

can be turned into a dynamical system xn+1 = f(xn) where f(xn) is defined to be xn+1,

for all n ≥ 0, and otherwise a value is arbitrarily assigned.
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Consider a sequence with the rule xn+1 = f(xn + xn−1). If we fix x0, x1 this produces a

deterministic sequence, which is a Markov chain as explained earlier. When we vary x0, x1,

there is no quarantee for the transition mechanisms bing the same. T

In fact there are different notions for a Markov chain. By a Markov chain we

often refers to a family of Markov processes with a family of initial conditions

x0. From any initial condition, its evolution is the same. We often use a subscript

to describe the initial condition, e.g. Px(xn ∈ A) indicates we are discussing the process

with initial value x.

4. Let xn+1 = sin(xn+xn−1). We can build a stochastic process, which is manifestly a Markov

process, of which xn is a component. Setting yn = (xn−1, xn), then

yn+1 ≡ (y
(1)
n+1, y

(2)
n+1) = (xn, xn+1) =

(
y(2)
n , sin(y(1)

n + y(2)
n )
)
.

So (xn) is realised as a component of a Markov process.

We also present a number of continuous time Markov processes.

1. Brownian motions Bt.

2. solutions of the one dimensional stochastic heat equation with white noise.

dut =
1

2
∆ut + ξ̇t.

3. Solutions of SDEs:

dxt = σ(xt)dBt + σ0(x+ t)dt.



Chapter 3

Markov Property

Throughout the chapter the state space for the Markov chain is a separable metric space.

3.1 The Markov Property

We will introduce a more general notion of Markov property for which we can just as well assume

the process taking value in an index set which is not necessarily discrete set.

Let I be a subset of R, this is usually an interval in R+, or N0 or Z. A filtration is a a

family of of σ-algebras (Fs, s ∈ I) on Ω such that Fs ⊂ Ft ⊂ F , where s < t. If (xt, t ∈ I) is a

process such that, for each t, xt is measurable with respect to Ft, we say xt is adapted to Ft.
For t ∈ I, we denote by F0

t = σ{xs : 0 ≤ s ≤ t, s ∈ I} the smallest σ-algebra with respect to

which each xs, with s ≤ t and s ∈ I, is measurable. This is the natural filtration of (xt).

Definition 3.1.1 A stochastic process (xt) is said to have the Markov property (with respect

to a filtration Ft) if xt is adapted to Ft and if for any measurable subset A of X , any s, t ∈ I,

t > s,

P(xt ∈ A | Fs) = P(xt ∈ A | xs) a.s. (3.1)

This is the same as the statement that for any C ∈ Fs,

E
(
1A(xt)1C

)
= E

(
P(xt ∈ A | xs)1C

)
. (3.2)

Proposition 3.1.2 Suppose that a π-system D generates B(X ). If for any s, t ≥ 0, and A ∈ D,

(3.2) holds. Then (3.2) is satisfied by all A ∈ B(X ). Similarly one can test with C from a

sub-collection of sets of Fs, which is a π-system generating Fs.

21
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Proof. We only prove the first statement. Let C be fixed. Let

A = {A ∈ B(X ) : A satisfies (3.2).}.

The set of A satisfying (3.2) contains D. It is sufficient to show that A is a λ-system and hence

conclude by the π − λ theorem that A = B(X ). (1) X is in A. (2) If A ⊂ B, 1B\A = 1B − 1A.

Using linearity on the sides of (3.2) we see that B\A ∈ B(R). (3) If An is an increasing sequence

of sets in A increases to A, then by the monotone convergence theorem, A ∈ A.

Proposition 3.1.3 If xt is a Markov process with respect to any filtration Ft, it is a Markov

process w.r.t. its natural filtration.

Proof. Let Fxs := σ(xr, 0 ≤ r ≤ s). Since σ(xs) ⊂ Fxs ⊂ Fs, for any s < t, A a measurable set

in the state space, the following holds almost surely:

P(xs+t ∈ A | Fxs ) = E(P(xs+t ∈ A | Fs)| Fxs )

= E(P(xs+t ∈ A | xs)| Fxs )

= P(xs+t ∈ A | xs),

where we applied the tower property. This completes the proof.

Theorem 3.1.4 If (xt) is a Markov process, with filtration (Ft), then for any bounded Borel

measurable f : X → R,

E
(
f(xt) |Fs

)
= E

(
f(xt) | xs

)
. (3.3)

Proof. If f = 1A, where A is a measurable subset of X , then the required identity is exactly (3.1).

Let f =
∑n

i=1 ai1Ai , an arbitrary simple function, then by the linearity of taking conditional

expectations, (3.3) holds also. If f is non-negative and bounded, then there exists an increasing

sequence of non-negative simple functions fn with limit f . We apply the conditional monotone

convergence theorem,

E
(
f(xt) |Fs

)
= lim

n→∞
E
(
fn(xt) |Fs

)
= lim

n→∞
E
(
fn(xt) | xs

)
= E

(
f(xt) | xs

)
.

Finally let f = f+− f−, then |f | = f+ + f−, and so both f+ and f− are non-negative bounded

functions, we now apply linearity to conclude.

Before presenting a remark on the filtration to which the Markov property is tested, we recall

the following property of taking conditional expectations.

Exercise 3.1.1 Suppose that X,Y, S are random variables with S independent of X and Y .

Suppose that X is integrable, show that

E(X|Y, S) = E(X|Y ), a.s.
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Remark 3.1.5 One might ask ‘given a stochastic process, why we bother to introduce another

filtrationother than its natural filtration?’ One reason is the necessity /convenience to study

several stochastic processes on the same filtered probability space, so that Ft contains informa-

tion on the related stochastic processes of interest simultaneously. The other reason is that we

often assume that Ft is a σ-algebra with other properties, e.g. it contains all null sets –this is

not often satisfied by the natural filtration. For continuous parameter filtrations, we also often

assume that Ft is right continuous in time –which is gain not often satisfied by the natural

filtration.

We have seen, in Proposition 3.1.3, that if xt is a Markov process with respect to any filtration

Ft, it is a Markov process w.r.t. its natural filtration. By the above exercise we can enrich Ft
with the σ-algebra of an independent random variable without changing the Markov property,

while a Markov process with respect to its natural filtration may not have the Markov property

with respect to a large σ-algebra.

3.1.1 Equivalent definitions for the Markov property

Let us now return to discrete time and X being a separable metric space. There are a number

of other equivalent conditions for the Markov property. We list the more frequently used ones

here.

The role played by the future can be exchanged, see the theorem below. Let Bb(X ) denotes

the set of functions f : X → R that is bounded and Borel measurable.

Theorem 3.1.6 Given a process {xn}n∈N, three indices ` < m < n, the following properties

are equivalent:

(i) For every f ∈ Bb(X ), E(f(xn) |x`, xm) = E(f(xn) |xm).

(ii) For every g ∈ Bb(X ), E(g(x`) |xm, xn) = E(g(x`) |xm).

(iii) For any f, g ∈ Bb(X ), one has

E(f(xn)g(x`) |xm)) = E(f(xn) |xm) E(g(x`) |xm) .

Proof. By symmetry, it is enough to prove that (i) is equivalent to (iii). We start by proving

that (i) implies (iii).

E(f(xn) g(x`) |xm)
tower

= E
(
E
(
f(xn)g(x`) |xm, xl

)
|xm

)
taking out known

= E
(
g(x`)E

(
f(xn) | xm, xl

)
|xm

)
(i)
= E

(
g(x`)E

(
f(xn) |xm

)
|xm

)
= E(g(x`) |xm) E(f(xn) |xm) ,

and so (iii) holds.
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To show the converse, we test with functions of the form g(xm)h(x`) where g, h ∈ Bb.

E(f(xn)g(x`)h(xm)) = E
(
h(xm) E(f(xn)g(x`) |xm)

)
(iii)
= E

(
h(xm) E(f(xn)|xm)E

(
g(x`) |xm

))
=E
(
E
(
g(x`)h(xm) E(f(xn)|xm) |xm

))
=E
(
g(x`)h(xm)E(f(xn)|xm)

)
.

Since the last identity implies that
∫
A f(xn)dP =

∫
A E(f(xn) |xm)dP for A = A1 ∩ A2 where

A1 ∈ σ(x`) and A2 ∈ σ(xm), this proves (i).

Intuitively, property (iii) means that the future of the process is independent of its past,

provided that we know the present.

Remark 3.1.7 Every Markov process satisfies the properties of Theorem 3.1.6. It was however

proven in [?] that the converse is not true, i.e. there exist processes that satisfy the three

(equivalent) properties above but fail to be Markov.

The Markov property states conditioning on the whole history up to present time n − 1 is

equivalent to conditioning on xn−1. Below we show that we may replace the whole history by

part of the history.

Lemma 3.1.8 Let xn be a Markov process. Let 0 ≤ t1 < t2 < · · · < tm−1 < tm = n − 1 where

n > 1 and ti ∈ N ∪ {0}. Let f, h : X → R be bounded Borel measurable functions. Then

E
(
f(xn+1)h(xn) |xt1 , . . . , xtm−1 , xn−1

)
= E

(
f(xn+1)h(xn)|xn−1

)
.

Proof. Let G = σ(xt1 , . . . , xtm−1 , xn−1), Since G ⊂ Fn−1 ⊂ Fn, we use the tower property to

insert a couple of extra conditional expectations:

E
(
f(xn+1)h(xn) | G

)
= E

(
E
(︷ ︸︸ ︷
E
(
f(xn+1)h(xn) | Fn

)
|Fn−1

)∣∣G)
= E

(
E
(︷ ︸︸ ︷
h(xn)E

(
f(xn+1) |xn

)
|Fn−1

)∣∣G).
We have used the Markov property. Since Y := E

(
f(xn+1)h(xn) | Fn

)
is a function of xn, we

may apply again the Markov property this time conditioning Y on Fn−1 to obtain a function

of xn−1 which is G-measurable. We may now collapsing the conditional expectation on G, using

the tower property again:

E
(
f(xn+1)h(xn) | G

)
= E(Y |xn−1).

Finally we collapse the conditioning on Fn−1 in Y to conclude.

Take h ≡ 1 and f an indicator function we obtain immediately the following:
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Corollary 3.1.9 Let (xn) be a Markov process, let t1 < t2 < · · · < tm−1 < tm = n − 1 where

n > 1 and ti ∈ N0. Let A be a Borel set, then

P
(
xn+1 ∈ A |xt1 , . . . , xtm−1 , xn−1

)
= P

(
xn+1 ∈ A |xn−1

)
.

This means that the gap between the future variable and the past need not be 1. Also the same

method allow us to work with multi-time points in the future and multiple time points in the

past, none needs to consists of consecutive numbers. So by induction, we should see a more

general statement ( see the exercise below).

Exercise 3.1.2 Let xn be a Markov process. Let s1 < s2 < · · · < sm < t1 < · · · < tn. Let

fi : X → R be bounded Borel measurable, then

E
(
Πn
i=1fi(xti) |xs1 , . . . , xsm

)
= E

(
Πn
i=1fi(xti) |xsm

)
.

Finally,

Proposition 3.1.10 A stochastic process (xn)∞n=0 is a Markov process with respect to its own

filtration with state space X if and only if one of the following conditions holds.

1. For any Ai ∈ B(X ), i = 0, . . . , n,

P
(
x0 ∈ A0, . . . , xn ∈ An

)
=

∫
∩n−1
i=0 {xi∈Ai}

P
(
xn ∈ An | xn−1

)
dP.

2. For every n ∈ N and for every bounded measurable function f : X → R one has

E
(
f(xn) |x0, x1, . . . , xn−1

)
= E

(
f(xn) | xn−1

)
. (3.4)

3. For any fi : X → R bounded Borel measurable and for any n ∈ N,

E
(
Πn
i=1fi(xi)

)
= E

(
Πn−1
i=1 fi(xi) E(fn(xn)|xn−1)

)
.

Proof. (1) Let C = {x0 ∈ A0, . . . , xn−1 ∈ An−1}, then the LHS is E(1C1An(xn)), and so

the Markov property holds for these sets, which is a π-system generating Fs, and thus holds

on Fs. See Proposition 3.1.2. The Equivalence of (2) with the Markov property is proved

earlier. (iii) obviously implies (i). Using the tower property, the Markov property leads to

E(πni=1fi(xi)) = E(πn−1
i=1 fi(xi)E(fn(xn|Fn−1)) = E(πn−1

i=1 fi(xi)E(fn(xn)|xn−1)), and (iii) follows.
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3.2 Gaussian Measure and Gaussian Processes

I will take a digression to explain Gaussian measures, this will allow us to work with Exercise

6.2.5.

Definition 3.2.1 A measure µ on Rn is Gaussian if there exists a non-negative symmetric n×n
matrix K and a vector m ∈ Rn such that∫

Rn
ei〈λ,x〉µ(dx) = ei〈λ,m〉−

1
2
〈Kλ,λ〉.

The Gaussian measure has a density with respect to the Lebesgue measure if and only if K is

non-degenerate in which case the density is

1√
(2π)n det(K)

e−
1
2
〈K−1(x−m), x−m〉.

The vector m is called its mean, and K is called its covariance operator.

We emphasise that a Gaussian measure is determined by its mean and its covariance oprator.

A random variable with a Gaussian distribution is called a Gaussian random variable.

Theorem 3.2.2 If X is a Gaussian random variable on Rd with covariance operator K, and

A : Rd → Rn a linear map, then AX is a Gaussian random variable with covariance AKAT .

Proof. We only need to identify E
[
ei〈λ,AX〉

]
for any λ ∈ Rn:

E
[
ei〈λ,AX〉

]
= E

[
ei〈A

Tλ,X〉]
= ei〈A

Tλ,m〉− 1
2
〈KATλ,ATλ〉

= ei〈λ,Am〉−
1
2
〈AKATλ,λ〉.

This shows that X is a Gaussian random variable with mean Am and covariance AKAT .

Example 3.2.1 If (X1, . . . XN ) is a Gaussian random variable with each component Xi taking

values in Rd, and ai ∈ R, then
∑N

i=1 aiXi is a Gaussian random variable.

There some examples of a random varaible X = (X1, X2) such that X1 and X2 are Gaussian,

but X is not Gaussian.

Exercise 3.2.1 If {X1, . . . XN} are independent random variables with each Xi Gaussian on

Rd, and ai ∈ R, show that
∑N

i=1 aiXi is a Gaussian random variable.
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Kolmogorov’s Extension Theorem

Let X be a metric space, which we assume to be separable, and B(X ) the Borel σ-algebra,

the smallest σ-algebra generated by the collection of open subsets. The fundamental about a

random variable is its probability distributions.

Definition 4.0.1 If z : Ω→ X is a measurable function, we may push forward the measure on

Ω to a measure on X as follows. The measure is denoted by z∗(P):

z∗(P)(A) = P({ω : z(ω) ∈ A}),

This is the probability distribution of z.

4.1 Pushed forward measures

Let (xn) be a stochastic process with state space X . Let XN0 denote the sequence space:

XN0 = Π∞i=0X = {(a0, a1, a2, . . . ) : ai ∈ X}.

We may consider (xn) as a map from Ω to XN0 :

Ω → XN0

ω 7→ (xn(ω)).

Is this a measurable map? To answer this question we should specify a σ-algebra on the product

space.

Given any index set Λ and a collection of sets Xi, we denote by Πi∈ΛXi the product space

whose elements are of the form (ai)i∈Λ where ai ∈ Xi. We denote by πm the projection maps:

πm : Π∞i=1Xi → Xm

(ai)i∈Λ 7→ an.

27
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Definition 4.1.1 Let Λ be an index set and for each i ∈ Λ, (Xi,Fi) a measurable space. The

product σ-algebra ⊗i∈ΛFi is the smallest σ-algebra on Π∞i=1Xi such that each πi is measurable.

In other words,

⊗i∈ΛFi = σ
{
π−1
m (Am) : Am ∈ Fm,m ∈ Λ

}
.

The product σ-algebra is generated by cylindrical sets, those are sets of the form {πn1 ∈
A1, . . . , πnm ∈ Am}, where n1 < n2 < · · · < nm is a set of times and with Ai ∈ B(Xi).
Cylindrical sets are of the form Π∞i=1Ai in which only a finite number of Ai’s are not the whole

space.

The following can be found in Real Analysis by G. B. Folland, pages 22-23.

Proposition 4.1.2 If we have a countable product space Π∞i=1Xi, each factor with a σ-algebra

Fi. Suppose that Fi = σ(Di). Then

⊗∞i=1Fi = σ
(
Π∞i=1Ei : Ei ∈ Di

)
.

If X1, . . . ,Xn are separable metric spaces, then the Borel σ-algebra of the product metric space

Πn
i=1Xi equals the product σ-algebra:

B(Πn
i=1Xi) = ⊗ni=1B(Xi).

Definition 4.1.3 If (xn) is a stochastic process on X ,

Ω → X∞

ω 7→ (xn(ω))

is measurable (assuming the product space is equipped with the product σ-algebra). It induces

a probability measure on (X∞,⊗∞B(X )), which is the distribution of the process.

4.2 Finite dimensional distributions

Similarly, the first n component of the process (x1, . . . , xn) is a measurable map from

Ω→ Πn
i=1X .

Their joint probability distribution, µn, is a measure on ⊗ni=1X . The collection of measure {µn}
are the finite dimensional distributions of the process (xn).

A similar definition holds for a continuous time stochastic process:
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Definition 4.2.1 If (xt) is a stochastic process with t ∈ I. Then for any t1 < . . . , < tn, ti ∈ I
and any n, we define a family of probability measures µt1,...,tn on X n = Πn

i=1X to be the measure

pushed forward by (xt1 , . . . , xtn):

µt1,...,tn(A1 × · · · ×An) = P(xt1 ∈ A1, . . . , xtn ∈ An}).

These are called finite dimensional distributions of the stochastic processes.

For discrete state space and discrete time stochastic processes, it is sufficient to work with

{x1 = i1, . . . , xn = in).

4.3 Construction of random variables

Let µ be a probability measure on X . We set Ω = X , F = B(X ) and P = µ. Then the identity

map X, X(ω) = ω, is a random variable with probability distribution P on X :

P(X ∈ A) = P(A).

In other words, the identity map is the canonical realisation for the probability distribution P.

Similarly, if µn is a probability measure on (Πn
i=1Xi,B(Πn

i=1Xi)), we take the trio as our

underlying probability space (Ω,F ,P). Then (π1, . . . , πn) is a random variable with values in

Πn
i=1Xi with probability distribution µn. In deed, for any Ai ∈ B(Xi),

µn(π1 ∈ A1, . . . , πn ∈ An).

Definition 4.3.1 A family of random variables (Y1, . . . , Yn) is independent if

P(Y1 ∈ A1, . . . , Yn ∈ An) = Πn
i=1P(Yi ∈ Ai),

for any measurable sets Ai. In other words the random variables are independent if and only if

the pushed forward measures of P by (Y1, . . . , Y N), is the product of the marginal probability

distributions.

Example 4.3.1 If µi are finite measures on B(Xi), we may define a product measure on the

tensor Borel σ-algebra as follows:

µ1 ⊗ · · · ⊗ µn(A1 × · · · ×An) = Πn
i=1µi(Ai)

for any Ai ∈ B(Xi). Any random variable, say (X1, . . . , Xn), with µ1 ⊗ · · · ⊗ µn as probability

distribution has independent components.
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4.4 Kolmogorov’s extension theorem

Definition 4.4.1 Let, for n = 0, 1, 2, . . . , µn be a probability measures on X n. They are said

to satisfy Kolmogorov’s consistency conditions if

µn+1(A1 ×A2 × . . .×An ×X ) = µn(A1 ×A2 × . . .×An), (4.1)

for any n ≥ 0 and any Ai ∈ B(X ).

Example 4.4.1 Let (xn) be a stochastic process on X and {µn} its finite dimensional distribu-

tions:

µn(A0 ×A1 × · · · ×An) := P(x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An).

Since,

P(x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An, xn+1 ∈ X ) = P(x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An),

{µn} satisfies the consistency conditions.

Theorem 4.4.2 (Kolmogorov’s extension theorem) Let, for n ∈ N, {µn} be probability

measures on X n, satisfying Kolmogorov’s consistency conditions. Then there exists a unique

probability measure µ on X∞ such that

µn(A) = µ(A×X∞)

for any n ≥ 1 and for any A ∈ B(X n).

In other words, if Projn : X∞ → X n is the projection to the first n components, µn =

(Projn)∗P.

Applying this to Example 4.4.1, we have the following statement:

Corollary 4.4.3 The finite dimensional distributions of a stochastic process (xn) on X deter-

mine uniquely its probability distribution on ⊗∞i=1B(X ).

Remark 4.4.4 This extension theorem is formulated slightly different from the usual one in

which you have a complete family {µJ} where J is any finite ordered sub-index set satisfying

consistency conditions. It is clear how to construct µJ if J is a subindex set of {1, . . . , n} so that

the consistency conditions hold, the µJ can be constructed from µn by filling any component

corresponding to the missing index with the whole set. For example at order 2 we have

µ1,2(A×B) = µ2(A×B), µ·,2(A) = µ(X ×A), µ1,·(A) = µ1(A) = µ2(A×X ).

The dot in the notation indicates the missing indexes, so we have one measure on R2, consistent

and with it two measures on R1.



4.5. CANONICAL STOCHASTIC PROCESS, CANONICAL PROBABILITY SPACE 31

At order 3, we have in addition to the above, also µ3 = µ1,2,3,

µ1,·,3(A×B) = A×X ×B, µ·,2,3(A×B) = µ(X ×A×B), µ·,·,3(A) = µ(X × X ×A).

At n = 4, one can add further the following: µ1,2,3,4 = µ4,

µ·,2,3,4, µ1,·,3,4, µ1,2,·,4, µ·,·,3,4, µ·,2,·,4, µ1,·,·,4, µ·,·,·,4.

4.5 Canonical stochastic process, canonical probability space

Corollary 4.5.1 Given any consistent family of probability measure {µn}, there exists a stochas-

tic process with {µn} as its probability distribution.

Proof. Let Ω = Π∞i=0X , F = ⊗∞i=0B(X ). Let P denote the probability measure determined

by {µn} with Kolmogorov’s theorem. Then {πn} is a stochastic process with µn as its finite

dimensional distributions. Indeed,

P(z : π0(z) ∈ A0, . . . , πn(z) ∈ An) = P(A0 × · · · ×An) = µn(A0 × · · · ×An),

as required.

4.6 Stationary Processes

With the notions introduced earlier, we can understand the concept of stationary processes. We

define the shift operators θn, where n ∈ N,

θn : XN0

→ XN0

(a0, a1, . . . , 0) 7→ (an, an+1, . . . ).

In other words, θn(a·) = (an+·).

Definition 4.6.1 A stochastic process (xn) is said to be a stationary process if for any n ≥ 0,

the probability distributions of the stochastic processes x· and θnx· are the same.

A stochastic process is a stationary process if and only if their finite dimensional distributions

are invariant under the shifts. For a Gaussian processes this is equivalent to the statement that

Exn is a constant of n and the covariances cov(xn, xn+m) are invariant in n.





Chapter 5

Markov Processes With Transition

Probabilities

5.1 Transition Probabilities

Suppose that (xn) is a Markov process, for each Borel set A and for each n we obtain a family of

functions P(xn+1 ∈ A|xn = x), these functions are determined only on a set of full measure with

respect to Pxn , the law of xn. We now assume the time-homogeneous property: these functions

are independent of time. We also assume that we can choose versions of P(xn|xn−1 = x), denote

it by P (x,A) which is independent of n by time homogeneity, in a nice way (the meaning of the

nicety is explained below ) and denote this function by P (x,A). They indicate the probability

to move from x to A in one step.

Definition 5.1.1 We say that P ≡ {P (x,A) : x ∈ X , A ∈ B(X )} is a family of transition

probabilities if

• for each x ∈ X , P (x, ·) is a probability measure on X ;

• For each A ∈ B(X ), the function x 7→ P (x,A) is Borel measurable.

Remark 5.1.2 ** This is equivalent to the statement that there exists a measurable map P

from X into P(X ), the space of probability measures on X , such that(
P (x)

)
(A) = P (x,A)

for every A ∈ B(X ) and x ∈ X .

Example 5.1.1 Let us consider the random dynamical system xn+1 = F (xn, ξn+1), from Ex-

ample 2.2.4, where ξn are independent random variables on Y with probability distribution µ.

33
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Then,

P(xn+1 ∈ A|x0, . . . , xn)(ω) = P(F (xn(ω), ξn+1) ∈ A) =

∫
Y

1A(F (xn(ω), y)µ(dy).

Then {P (x,A)}, where

P (x,A) :=

∫
Y

1A(F (x, y)µ(dy),

are transition probabilities, and

P(xn+1 ∈ A|xn)(ω) = P (xn(ω), A).

Note that the transition mechanism P (x,A) is independent of time n. This is a time homogenous

Markov process.

Example 5.1.2 Suppose that {P (x,A)} is a family of transition probabilities and xn is a

Markov chain with P(xn+1 ∈ A|xn)(ω) = P (xn(ω), A). Then for any f ∈ Bb(X ),

E(f(xn+1)|xn) =

∫
X
f(y)P (xn, dy). (5.1)

Furthermore, for almost surely all ω,

P(xn+2 ∈ A|xn)(ω) = E
(
E(xn+2 ∈ A|xn, xn+1

)
|xn
)
(ω)

= E
(
P (xn, A

)
|xn
)
(ω) =

∫
X
P (y,A)P (xn(ω), dy).

.

We set

P 2(x,A) =

∫
X
P (y,A)P (x, dy).

Then P(xn+2 ∈ A|xn) = P 2(xn, A) and∫
X
f(y)P 2(x, dy) =

∫
X

∫
X
f(y)P (z, dy)P (x, dz).

P(xn+3 ∈ A|xn)(ω) = E
(
E(xn+3 ∈ A|xn, xn+1, xn+2

)
|xn
)
(ω)

= E
(
P (xn+2, A

)
|xn
)
(ω) =

∫
X
P (y,A)P 2(xn(ω), dy).

Set

P 3(x, y) =

∫
X
P (y,A)P 2(x, dy).

By first conditioning xn, we expect that

P 3(x, y) =

∫
X
P (y,A)P 2(x, dy) =

∫
X
P 2(y,A)P (x, dy).

We will see later this is the Chapman-Kolmogorov equation.
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5.1.1 Transition functions and Chapmann-Kolmogorov equations

Definition 5.1.3 A family of transition probabilities {Pn(x, ·) : x ∈ X n = 0, 1, 2, . . . } is a

transition function if

(1) For any n and each x ∈ X , P (x, ·) is a probability measure on X ;

(2) For each A ∈ B(X ) and n, the function x 7→ Pn(x,A) is Borel measurable.

(3) P 0(x, ·) = δx.

(4) (Chapmann-Kolmogorov equations): For every n,m ≥ 1,

Pn+m(x,A) =

∫
X
Pn(y,A)Pm(x, dy). (5.2)

The probabilities Pn are called n-step transition probabilities.

Remark 5.1.4 The Chapmann-Kolmogorov equation (5.2) holds for every A ∈ B(X ) is equiv-

alent to the statement that for any f ∈ Bb,∫
X
f(z)Pn+m(x, dz) =

∫
X

(∫
X
f(z)Pn(y, dz)

)
Pm(x, dy). (5.3)

5.1.2 Construction of transition function from transition probabilities

As usual, let Bb(X ) denote the set of bounded Borel measurable real valued functions on X . We

first define Pn, then associate with the movement of the Markov chain.

Definition 5.1.5 Given one step probabilities P , set

1. P 0(x, ·) = δx,

2. P 1(x, ·) = P (x, ·),

3. For any n ≥ 1 and x ∈ X ,

Pn+1(x,A) =

∫
X
P (y,A)Pn(x, dy) , ∀A ∈ B(X ) (5.4)

Note that for any n ≥ 1,∫
X
Pn(y,A)P 0(x, dy) = Pn(x,A),

∫
X
P 0(y,A)Pn(x, dy) = Pn(x,A).
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Proposition 5.1.6 Given a family of (one-step) transition probabilities {P (x, ·)}, the family

of probability measures {Pn(x, ·), x ∈ X , n = 0, 1, 2, . . . } constructed in Theorem 5.1.5, is a

transition function.

Proof. We only need to show the Chapman-Kolmogorov equations hold. This holds for every

n ≥ 1 and for every m = 0, 1. We assume that it holds for all n,m such that k = n + m. We

show (5.2) holds for k = n+m+ 1. Let 0 ≤ j < n+m. We first use the definition,

Pn+m+1(x,A) =
∫
X P (y,A)Pn+m(x, dy)

=
∫
X
(∫
X P (z,A)P j(y, dz)

)
Pn+m−j(x, dy)

=
∫
X P

1+j(y,A)Pn+m−j(x, dy),

In the second step we used that for any f ∈ Bb,∫
X
f(z)Pn+m(x, dz) =

∫
X

∫
X
f(z)Pn(y, dz)Pm(x, dy). (5.5)

The proof is complete.

5.1.3 Markov chain with transition functions/ transition kernels

Definition 5.1.7 The transition probabilities P = {P (x,A) : x ∈ X , A ∈ B(X )} are the

transition probabilities for a Markov chain (xn) if for each A ∈ B(X ), and each n ≥ 0,

P(xn+1 ∈ A|xn) = P (xn, A), a.s. (5.6)

The Markov chain is then said to be a time-homogeneous Markov chain. These transition

probabilities are also called the one step probabilities.

Note. Henceforth, we focus on time-homogeneous Markov chains with transition probabili-

ties, sometimes we drop ‘time-homogeneous’ and/ or ‘ with transition probabilities’ for simplicity.

Remark 5.1.8 1. Since (xn) is a Markov chain, (5.6) is equivalent to

P(xn+1 ∈ A|Fn) = P (xn, A), ∀A ∈ B(X ).

2. This is also equivalent to the statement that for every f : X → R bounded Borel measur-

able,

E(f(xn+1)|Fn) =

∫
X
f(y) P (xn, dy), a.s.

Exercise 5.1.1 If Y is an integrable random variable, F1 ⊂ F2 are sub-algebras, show that if

E(Y |F2) is F1-measurable, then it is E(Y |F1).
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Remark 5.1.9 There exists a stochastic process (xn) and transition probabilities P with the

relation

P (xn+1 ∈ A|xn) = P (xn, A),

and (xn) is not a Markov process. This is why we insist on our process is a Markov chain with

transition probabilities.

Example 5.1.3 Let X = N. Then the transition probabilities are determined by the numbers:

p(i, j) = P(xn+1 = j|xn = i).

They satisfies ∑
j∈X

p(i, j) = 1.

Let (xn) be a stochastic process satisfying the following: for every triplet of natural numbers

i, j,m, there exist numbers Pmij such that Pmij = P(xn+m = j|xn = i) and for all states i, j and

all natural numbers n,m, the Chapman-Kolmogorov relation

Pn+m
ij =

N∑
k=1

PnikP
m
kj ,

holds. Then (xn) is not necessarily a Markov process, for an example we refer to a paper by

William Feller 1.

The following result is fundamental to the description of Markov processes:

Theorem 5.1.10 Let (xn) be a time-homogeneous Markov process with transition probabilities

P . Then, one has for every n,m ≥ 0,

(1)

P(xn+m ∈ A |xm) = Pn(xm, A) , (5.7)

Note that P(xn+m ∈ A |xm = x) = Pn(x,A) a.s..

(2) If x0 ∼ µ,

P(xn ∈ A) =

∫
X
Pn(x,A) µ(dx).

1William Feller: Non-Markovian processes with the semi-group property. In Ann. Math. Statust. Volum 30,

number 4 (1959) pp1252-1253.

https://projecteuclid.org/download/pdf1/euclid.aoms/1177706110
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Proof. (1) The required identity holds for any m and n = 1. By induction, we assume one holds

for all m and all n ≤ k. Suppose that this holds for n = k. Let n = k + 1, we begin with

inserting conditioning on Fm and use the Markov property,

P(xk+m+1 ∈ A|xm) = E
(
E
(
1xk+m+1∈A | Fm+k

)
|xm
)

= E(P (xm+k, A) |xm)

=

∫
X
P (z,A)P k(xm, dz) = P k+1(xm, A), ∀A ∈ B(X ).

In the last line, we have used induction hypothesis E(f(xk+m)|xm) =
∫
X f(z)P k(x, dz) applied

to f = P (·, A).

(2)

P (xn ∈ A) = E
(
E
(

1xn∈A|x0

))
= E(Pn(x0, A)) =

∫
X
Pn(z,A)µ(dz).

Exercise 5.1.2 If (xn) is a time-homogeneous Markov process with transition probabilities P

and initial distribution µ, prove that

P(xn+1 ∈ A, xn ∈ B) =

∫
X

∫
B
P (y,A)Pn(z, dy)µ(dz).

Proposition 5.1.11 If (xn) is a Markov process with transition probabilities P , then for any

fi ∈ Bb,

E(Πn
i=0fi(xi)) =

n+1︷ ︸︸ ︷∫
X
· · ·
∫
X

Πn
i=0fi(yi)Π

n−1
i=0 P (yi, dyi+1)µ(dy0). (5.8)

Proof. Let us assume that this holds for k ≤ n− 1. Then

E(Πn
i=0fi(xi))

tower
= E(E(Πn

i=0fi(xi)|Fn−1))

=E
(
Πn−1
i=0 fi(xi)E(fn(xn)|Fn−1)

)
Markov

= E
(
Πn−1
i=0 fi(xi)E(fn(xn)|xn−1)

)
=E

(
Πn−1
i=0 fi(xi)

∫
X
fn(yn)P (xn−1, dyn)

)
The last function involves only {x0, x1, . . . , xn−1}, we may apply the induction hypothesis The

rest follows from induction:

RHS =

n︷ ︸︸ ︷∫
X
· · ·
∫
X

(
Πn−1
i=0 fi(yi)

∫
X
fn(yn)P (yn−1, dyn)

)
Πn−2
i=0 P (yi, dyi+1)µ(dy0)
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=

n+1︷ ︸︸ ︷∫
X
· · ·
∫
X

Πn
i=0fi(yi) Πn−1

i=0 P (yi, dyi+1)µ(dy0).

The last line follows after bring Πn−1
i=0 fi(yi) inside the inner most integral.

Remark 5.1.12 If (xn) is a stochastic process such that (5.8) holds for any n ≥ 0 and any

fi ∈ Bb then (xn) is a Markov process. Indeed tracing back the steps in the proof, we see

E(Πn
i=0fi(xi)) = E

(
Πn−1
i=1 fi(xi)E(fn(xn)|xn−1)

)
, then the Markovian property follows from part

(iii) of Proposition 3.1.10.

Corollary 5.1.13 If (xn) is a time homogeneous Markov chain with transition function P , then

for any n ≥ 1 and for any Ai ∈ B(X ),

P(x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An)

=
∫
A0

∫
A1
· · ·
∫
An−1

P (yn−1, An)P (yn−2, dyn−1) · · ·P (y1, dy2)P (y0, dy1)µ(dy0).
(5.9)

We emphasize that if (xn) is a stochastic process such that (5.9) holds for any n ≥ 1 and for any

Ai ∈ B(X ), (5.8) holds and (xn) is a Markov chain (with transition probability P and initial

distribution µ0).

Corollary 5.1.14 If xn is a process with finite dimensional distribution given by

µn(A1×· · ·×An) =

∫
A0

∫
A1

· · ·
∫
An−1

P (yn−1, An)P (yn−2, dyn−1) · · ·P (y1, dy2)P (y0, dy1)µ(dy0),

then (xn) is a time homogeneous Markov process with transition probability P .

Proof. The statement that (5.8) folds for any f ∈ Bb is equivalent to (5.9) holds for any Ai ∈
B(X ). Hence, xn is a Markov process, and one can check that its transition probabilities is P .

5.1.4 Existence of Markov Chains with given transition probabilities

Proposition 5.1.15 Given a family of transition probabilities P on X and a probability measure

µ0 on X . Then, there exists a (unique in law) Markov process x with transition probabilities P

such that the law of x0 is µ0.

Proof. Define the sequence of measures µn on X n by

µn(A0 × . . .×An) =
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∫
A0

∫
A1

∫
A2

· · ·
∫
An−2

∫
An−1

P (yn−1, An)P (yn−2, dyn−1) · · ·P (y1, dy2)P (y0, dy1)µ(dy0) .

It is easy to check that this sequence of measures satisfies the consistence condition in Kol-

mogorov’s extension theorem, by this theorem we conclude that there exists a unique measure

Pµ on X∞ such that the restriction of Pµ to X n is given by µn. (The subscript µ indicates the

initial distribution).

We now choose Ω = X∞ as our probability space equipped with the probability measure Pµ.

Then for (πn) the canonical process, i.e. πn((w0, w1, . . .)) = wn,

Pµ(π0 ∈ A0, . . . , πn+1 ∈ An) = Pµ(A0 × · · · ×An ×X∞) = µn(A0 × · · · ×An).

This means that (πn) has µn as its finite dimensional distribution, and by Corollary 5.1.14, it is

a Markov process with the required transition probabilities and initial distribution µ0. This con-

cludes the ‘existence’ part. The uniqueness follows from the ‘uniqueness’ part of Kolmogorov’s

extension theorem.

From the proof, the projection maps πn : X∞ → X is a Markov process on (X∞,⊗∞i=0B(X ),Pµ)

with state space X , transition probabilities P and initial distribution µ. Recall that this process

is called the canonical process.

It is traditional to denote by Px the probability measure on the canonical space X∞ induced

by the Markov process with transition probabilities P and initial distribution δx. That induced

by the Markov process with initial distribution µ is denoted by Pµ. Then on the canonical

probability space we use Ex and Eµ to denote taking expectations w.r.t. Px and Pµ respectively.

Example 5.1.4 Let xn be a Markov chain with transition probability P , then

Pµ(x1 ∈ B) =E(P (x1 ∈ B|x0)) = EP (x0, B) =

∫
X
P (y,B)µ(dy)

Pa(x1 ∈ B) =E(P (x1 ∈ B|x0)) = E[P (x0, B)] =

∫
P (y,B)δa(dy) = P (a,B).

Remark 5.1.16 We fix the transition probabilities P , and then for every x ∈ X we have a

Markov process with the initial distribution x. We emphasise that we have a family of Markov

process and we can start from everywhere a Markov process with the given transition probability.

5.2 Examples and Exercises

Example 5.2.1 Let X = R, let {ξn}n≥0 be an i.i.d. sequence of Normally distributed random

variables, and let α, β ∈ R be fixed. Then, the process defined by x0 = ξ0 and xn+1 =
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αxn + βξn+1 is Markov. Its transition probabilities are given by

P (x, dy) =
1√
2πβ

exp
(
−(y − αx)2

2β2

)
dy .

Note that if α2 + β2 = 1, the law of xn is independent of n.

Example 5.2.2 Let F : X → X be an arbitrary measurable map and consider an arbitrary

probability measure µ on X . Then, the stochastic process obtained by choosing x0 randomly

in X with law µ and defining recursively xn+1 = F (xn) is a Markov process. Its transition

probabilities are given by P (x, ·) = δF (x).

We will only consider time-homogeneous Markov processes from now on.

Exercise 5.2.1 Let ξn be a sequence of real-valued i.i.d. random variables and define xn re-

cursively by x0 = 0, xn = αxn−1 + ξn. Sow that x defined in this way is a time-homogeneous

Markov process and write its transition probabilities in the cases where (1) the ξn are Bernoulli

random variables (i.e. ξn = 0 with probability 1/2 and ξn = 1 otherwise) and (2) the law of ξn
has a density p with respect to the Lebesgue measure on R.

In the case (1) with α < 1/2, what does the law of xn look like for large values of n?

Example 5.2.3 Let Mn = max(x0, x1, . . . , xn), where (xn) is a simple random walk starting

from 0, xn =
∑n

i=0 ξi where ξ0 = 0 and ξi, i ≥ 1 are iid Bernoulli random variables: P(ξi =

±1) = 1
2 . Then (Mn) is not a Markov process.

There are three paths with M3 = 1, which has probability 1
8 being taken:

σ1 : x0 = 0, x1 = 1, x2 = 0, x3 = 1,

σ2 : x0 = 0, x1 = 1, x2 = 0, x3 = −1,

σ3 : x0 = 0, x1 = −1, x2 = 0, x3 = 1.

For the paths σ1 and σ3, M4 = 2 with probability 1
2 . For the path σ2, M4 = 2 with probability

0. The probability of M4 = 2 depends not just on M3 it depends on the actual path, concluding

that (Mn) is not a Markov process. (This can be computed also with elementary probability,

since M4 = 2 whether the walk goes up and comes down. Also P(M4 = 2|M3 = 1) = 1
3 . This can

be computed using the space of the path of uniform probability as probability space, counting

paths or using elementary conditional expectations.

P(M4 = 2|(x0, x1, x2, x3) = σ1) =
P(M4 = 2, (x0, x1, x2, x3) = σ1)

P((x0, x1, x2, x3) = σ1)
=

1

2
.
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5.3 Transition operators and invariant measures

Let (Ω,F ,P) be a probability space, (xn) a time-homogenous Markov process with transition

probabilities P . Then P (xn ∈ A|x0 = x) = Pn(x,A). If the chain has initial distribution µ, the

distribution of xn is denoted by Pµ(xn ∈ A). Then

Pµ(xn ∈ A) =

∫
X
Pn(x,A)µ(dx).

If x0 is distributed as δa, we denote the probability xn in A by Px(xn ∈ A). Then

Px(xn ∈ A) =

∫
X
Pn(x,A)δa(dx) = Pn(a,A) = P (xn ∈ A|x0 = x).

The subscript plays the role of noting the initial distribution and agrees with our notation for

the canonical sequence space picture.

Given a transition probability P we transfer a measure µ to the probability distribution of

x1,

µ→
∫
X
P (x, ·)µ(dx).

the same mechanics then send this to the distribution of x2.

Let P(X ) denote the space of probability measures on X .

Definition 5.3.1 Given transition probabilities P , we define a transition operator T ∗ on

P(X ), which will be denoted by T if there is no risk of confusion, by

(Tµ)(A) =

∫
X
P (x,A)µ(dx) . (5.10)

Note that T can be extended to the space of all finite signed measures by linearity. Note if

f : X → R is bounded measurable,∫
X
f(y)Tµ(dy) =

∫
X

∫
X
f(y)P (x, dy)µ(dx).

Remark: We denote by Tf =
∫
fdµ, for any measurable function for which the integral exists.

Definition 5.3.2 A measure such that Tµ = µ is called an invariant measure for P (or for the

time homogeneous Markov chain).

The measure assigns every measurable set 0 is the trivial measure. By an invariant measure

we mean a non-trivial invariant measure. We are most interested in finite invariant measures,

which can then be normalised to a probability measure.
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Exercise 5.3.1 Check that the operator Tn obtained by replacing P by Pn in (5.10) is equal

to the operator obtained by applying T n times, Tn = T ◦ T ◦ . . . ◦ T .

Remark 5.3.3 ** If the state space X is countable and T is an arbitrary linear operator on

the space of finite signed measures which maps probability measures into probability measures,

then T is of the form (5.10) for some P . This conclusion holds under the assumptions that X is

a complete separable metric space and T is continuous in the weak topology. This can be proved

using the fact that with these assumptions, every probability measure can be approximated in

the weak topology by a finite sum of δ-measures (with some weights).

We similarly define an operator T? : Bb(X ) → Bb(X ), the space of bounded measurable

functions from X to R, by(
T?f

)
(x) = E

(
f(x1) |x0 = x

)
=

∫
X
f(y)P (x, dy) .

Note that one always has T?1 = 1.

Exercise 5.3.2 Check that the operators T and T? are each other’s dual, i.e. that∫
X

(
T?f

)
(x)µ(dx) =

∫
X
f(x)

(
Tµ
)
(dx)

holds for every probability measure µ and every bounded function f .

Exercise 5.3.3 Show that T∗1 = 1, T∗f ≥ 0 if f ≥ 0.

5.3.1 Stationary Markov chain

Remark 5.3.4 Invariant probability measures and stationary processes. Given an invariant

measure π, take x0 ∼ π. Then π and transition probabilities (P (x, ·)) determine Pπ on X∞,

see Proposition 5.1.15. By Markov property, the shifted process θnx. is a Markov process

with transition probabilities P = (P (x, ·)) and initial distribution L(xn) = π. Hence on X∞,

L(θnx.) = Pπ. The process (xn) is a stationary process.

5.4 Example: Markov Chains On Discrete State Spaces

We return to Example 5.1.3 to formulate the discrete state space example in more detail.

5.4.1 Stochastic Matrix

Let X = N or have only a finite number of elements {1, . . . , N}. A probability measure on X
is determined by its value on singleton sets {j}. Suppose we are given ν(i) with

∑
i∈X ν(i) = 1
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and µ(i) ≥ 0, then ν(A) =
∑

i∈A µ(i) defines a probability measure on X . Thus we identify a

measure on X with a row vector with entries ν(i) ≥ 0 and
∑

i∈X ν(i) = 1.

The transition probabilities in Definition 5.1.1 are determined by P = (Pij) where Pij is

shorthand for P (i, {j}). Since P (i, ·) is a probability measure,∑
j∈X

Pij = 1.

It turns out these set of numbers Pij will determine the probability that a Markov chain takes

a particular path, which we describe below.

Definition 5.4.1 Suppose for i, j ∈ X , we are given Pij ≥ 0 with
∑

j∈X Pij = 1. Then P = (Pij)

is called a stochastic matrix. The sum of each row is 1.

5.4.2 N-step Transitions

If X = {1, . . . , N} then P = (Pij) is a N × N -matrix, otherwise it is a semi-infinite matrix.

These matrices determine the n-step transition probabilities defined by iteration by Pij = P 1
ij ,

and

Pn+1(i, {j}) =

∫
X
P (y, {j})Pn(i, dy) =

∑
k∈X

P (k, {j})Pn(i, {k}) =
∑
k∈X

PnikPkj , i, j ∈ X

Let us denote by Pn the matrix with entires P (i, {j}). Write also Pnij = Pn(i, {j}). (The Pn ’s

are also called n-step transition matrices.)

Exercise 5.4.1 Denote Pnij = Pn(i, {j}). Show that

Pnij =
∑

kn−1∈X

· · ·
∑
k1∈X

Pik1 . . . Pkn−2kn−1Pkn−1j .

This means the n-step transition matrices is in fact Pn =

n︷ ︸︸ ︷
P × · · · × P , the matrix multiplication

of P by itself n-times. For this reason both (Pn)ij and Pnij are used for its entry at row i and

column j. Observe that Pn is again a stochastic matrix, each row sums to 1.

The following definition is a paraphrase of Definition 5.1.7, with respect to the natural fil-

tration.

Definition 5.4.2 A time homogeneous Markov chain on a countable state space X with initial

distribution µ and transition probabilities (Pij) is a stochastic process such that the following

holds:

(1) P(x0 = i) = µ(i),
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(2) for any ij ∈ X and n = 1, 2, . . . ,

P(xn+1 = in+1|x0 = i0, . . . , xn = in) = P(xn+1 = in+1|xn = in) = Pinin+1 .

The following is Corollary 5.1.13 for discrete state space, a separate proof is given here for

reader’s convenience.

Proposition 5.4.3 Let (xn) be a Markov chain with transition probabilities Pij with initial

distribution µ. Then, for any state ij and any n ≥ 0,

P(x0 = i0, . . . , xn = in, xn+1 = in+1) = µ(i0)Pi0i1 . . . Pin−1inPinin+1 . (5.11)

Proof. We prove it by induction on the time n for which the identity holds.

P(x0 = i0, x1 = i1) = P(x1 = i1|x0 = i0)P (x0 = i0) = Pi0i1µ(i0).

Suppose the identity holds on n-times:

P(x0 = i0, . . . , xn = in, xn = in) = µ(i0)Pi0i1 . . . Pin−1in .

Then,

P(x0 = i0, . . . , xn = in, xn+1 = in+1)

= P(xn+1 = in+1|x0 = i0, . . . , xn = in, xn = in)P(x0 = i0, . . . , xn = in, xn = in)

= Pin,in+1 P(x0 = i0, . . . , xn = in, xn = in).

In the last line we used the Markov property. The rest follows by the induction hypothesis on

P(x0 = i0, . . . , xn = in, xn = in).

Corollary 5.4.4

P(xn+1 = in+1, . . . xn+m = in+m |x0 = i0, . . . , xn = in) = Πn+m−1
k=n Pikik+1

. (5.12)

Exercise 5.4.2 Show that for any m ≥ 0,

P(xn+m = kn, xn+m−1 = kn−1, . . . , xm+1 = k1 |xm = i) = Pik1Pk1k2 . . . Pkn−1kn

P(xn+m = kn, xn+m−1 = kn−1, . . . , xm+1 = k1, xm = i) = Pik1Pk1k2 . . . Pkn−1kn P(xm = i).

(5.13)

The following elementary fact will be used in the discussion later. If {Ci}∞i=1 is a partition

of Ω, then

P(A|B) =
∞∑
i=1

P(A ∩ Ci|B).

If xi is a random variable then {xi = k} where k ∈ X is a partition of Ω.
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Proposition 5.4.5 For any n ≥ 2,m ≥ 0 and any i, j ∈ X ,

P(xn+m = j | xm = i) = Pnij .

For any n ≥ 1, k ∈ X ,

P(xn = j) =
∑
k∈X

µ(k)Pnkj .

Proof. Firstly,

P(xn+m = j | xm = i) =
∑

km−1∈X
· · ·

∑
k1∈X

P(xn+m = j, xn+m−1 = kn−1, . . . , xm+1 = k1 | xm = i)

=
∑
k1∈X

· · ·
∑

kn−1∈X
Pik1 . . . Pkn−2kn−1Pkn−1j .

We have used (5.13) in the last step. Finally,

P(xn = j) =
∑
k∈X

P(xn = j, x0 = k) =
∑
k∈X

P(x0 = k)P(xn = j|x0 = k) =
∑
k∈X

µ(k)Pnkj ,

completing the proof.

Theorem 5.4.6 (The Champman-Kolmogorov equation) For any i, j ∈ X and n,m ≥ 1, we

have

Pn+m
ij =

∑
k∈X

PnikP
m
kj .

Proof. Since ∪k∈X {xn = k} = Ω, we have

Pn+m
ij = P(xn+m = j | x0 = i) =

∑
k∈X

P(xn+m = j, xn = k, x0 = i) / P (x0 = i)

=
∑
k∈X

P(xn+m = j|xn = k)
P(xn = k, x0 = i)

P(x0 = i)

=
∑
k∈X

PnikP
m
kj .

We have used Proposition 5.4.5.

5.4.3 The Markov property is determined by finite dimensional distributions

The following can be considered to be a converse to Proposition 5.4.3.
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Theorem 5.4.7 Suppose we are given a stochastic matrix P , a probability measure µ and a

stochastic process (xn). Suppose that the following relation holds for any n ≥ 1, and for any

i0, . . . , in+1 ∈ X ,

P(x0 = i0, . . . , xn = in, xn+1 = in+1) = µ(i0) Pi0i1 . . . Pin−1,inPin,in+1 .

Note this is (5.11). Then (xn) is a Markov chain with transition probabilities P = (Pij) with

initial distribution µ.

Proof. Take n = 1 in the above, P(x0 = i0, xi ∈ i1) = Pi0i1 µ(i0), summing up i1 ∈ X , we get

P(x0 = i0) = µ(i0). Also,

P (xn+1 = in+1 | xn = in, . . . , x0 = i0) =
P (xn+1 = in+1, xn = in, . . . , x0 = i0)

P (xn = in . . . , x0 = i0)
= Pin,in+1 .

This means, P (xn+1 = in+1 | xn, . . . , x0) = Pxn,in+1 , the right hand side is measurable w.r.t.

σ(xi), which means

P (xn+1 = in+1 | xn, . . . , x0) = P (xn+1 = in+1 | xn),

proving the Markov property and that P is its ( time-independent ) transition probabilities.

Remark 5.4.8 The Markov property of a stochastic processes is entirely determined by the

probability distributions of the family of random variables (x0, x1, . . . , xn) where n = 1, 2, . . . .

5.4.4 Conditional independence of the future and the past

Theorem 5.4.9 Let (xn) be a time homogeneous Markov chain with transition probability (Pij)

and initial distribution ν, and let s be a given time. Then conditioning on xs = i, (xs+n) is a

time homogeneous Markov chain with transition probability (Pij) and initial distribution δi, and

is independent of {x0, x1, . . . , xs}

Proof. The statement ‘conditioning on xs = i, ys ≡ xs+n is a time homogeneous Markov chain

with transition probability (Pi,j) and initial distribution δi’ means precisely the following:

P(y0 = is, . . . , yn+1 = is+n+1|xs = i) = δiisPisis+1 . . . Pis+nis+n+1 = Πs+n
k=sPikik+1

δiis .

The left hand side is P(xs = is, xs+1 = is+1, . . . xs+n+1 = is+n+1 |xs = i), the identity follows

from (5.12). The conditional independent statement means precisely the following: for any

A ∈ σ(x0, . . . , xs),

P((y0 = is, . . . , yn+1 = is+n+1)∩A|xs = i) = P((y0 = is, . . . , yn+1 = is+n+1)|xs = i)δiisP (A|xs = i).

(5.14)
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It is sufficient to check the above holds for A = {x0 = i0, . . . , xs = is} (The collection of set of

this form is a π-system generating σ(x0, . . . , xs)). The right hand side of (5.14) is

P((y1 = is+1, . . . , yn+1 = is+n+1)|xs = is)P (x0 = i0, . . . , xs = is|xs = is)

= Πs+n
k=sPikik+1

δiisδiisP (x0 = i0, . . . , xs = is|xs = i).

By the definition of elementary conditional probability, the left hand side of (5.14) is

P(y0 = is, . . . , yn+1 = is+n+1, x0 = i0, . . . , xs = is|xs = i) =
Πn+s
k=0Pikik+1

δi,isν(i0)

P(xs = i)
,

proving the independence of the future and past given the present.

5.4.5 Operator on Measures

Suppose that we are given a stochastic matrix (Pij) on X . Define:

(T ∗ν)(i) =
∑
k∈X

ν(k)Pki.

The matrix P acts on the measure ν on the right as matrix multiplication: T ∗ν = νP .

Since P is a stochastic matrix,∑
i∈X

(T ∗ν)(i) =
∑
k∈X

∑
i∈X

Pkiν(k) =
∑
k∈X

ν(k).

So the total mass of the new measure Tν is the same as that of ν. To summarise,

Remark 5.4.10 The map ν → T ∗ν is a transformation on probability measures on X . We

sometime use T in place of T ∗.

If (xn) is a Markov chain with transition matrix P and initial distribution ν, Tν is the

distribution of x1, . . . , Tnν is the distribution of xn.

5.4.6 Example: Two State Markov Chains

Let us consider a time-homogeneous Markov chain with two state X = {1, 2} and let P =(
1− α α

β 1− β

)
. What’s the probability that the chain starts from 1 returns to 1 in n-steps?

i.e. what is the approximate value of Pn11 = P(xn = 1 |x0 = 1)?

21

β

α
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Suppose that

P(x0 = 1) = ν(1), P(x0 = 2) = ν(2).

Then,

P(xn = 1) = Pn11ν(1) + Pn21ν(2), P(xn = 2) = Pn12ν(1) + Pn22ν(2).

Let P 0 be the identity matrix, then note (νPn)T = (P T )nνT ,

νT =

(
P(xn = 1)

P(xn = 2)

)
=

(
1− α β

α 1− β

)n(
ν(1)

ν(2)

)
=

(
1− α β

α 1− β

)(
P(xn−1 = 1)

P(xn−1 = 2)

)
.

Set the initial measure to be (1, 0)T . Then P(xn = 1) = Pn11, P(xn = 2) = 1− Pn11, and(
Pn11

1− Pn11

)
=

(
1− α β

α 1− β

)(
Pn−1

11

1− Pn−1
11

)
.

Thus,

Pn11 = (1− α− β)Pn−1
11 + β = (1− α− β)((1− α− β)Pn−2

11 + β) + β.

This is β if α+ β = 1. If α+ β 6= 1, iterate this to see,

Pn11 = (1− α− β)n + (1− α− β)n−1β + · · ·+ (1− α− β)β + β

=
β

α+ β
+

α

α+ β
(1− α− β)n.

.

By symmetry,

Pn =
1

α+ β

(
β + α(1− α− β)n α− α(1− α− β)n

β − β(1− α− β)n α+ β(1− α− β)n

)
.

21 11
Case 1. α = β = 0. Then P =

(
1 0

0 1

)
is the identity matrix and the

chain reduced to two single state Markov chains.

21

1

1

Case 2. 1 = α = β, then P =

(
0 1

1 0

)
. The chain hops from one state to

another. It returns to its original state in two steps. This is a 2-periodic Markov chain.

If we define yn = x2n, then (yn) is a Markov chain with stochastic matrix given by P 2 =(
1 0

0 1

)
, which can be reduced to two separate Markov chains on {1} and {2} respectively.
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21

β

α

Case 3. α = 0, β 6= 0, then eventually the chain arrives at 1. Similarly if β = 0, α 6= 0 case.

Case 3. (Aperiodic and irreducible) We have |1− α− β| < 1.

1. Then as n→∞,

Pn → 1

α+ β

(
β α

β α

)
.

The rate of convergence is exponential.

2. For any initial distribution (a, 1− a),

(a, 1− a)Pn → (a, 1− a)

(
β

α+β
α

α+β
β

α+β
α

α+β

)
= (

β

α+ β
,

α

α+ β
)

Observe that the measure is invariant under the transformation ν 7→ νP .

The above convergence indicates that from any initial distribution, the distribution of the

chain at time n convergence to the invariant probability distribution (there exists only one

such measure), this is ergodicity.

We now repeat this by working out the eigenvalues. It is easy to work out that P T has

eigenvalue 1 and λ = 1− α− β. Their corresponding eigenvectors are

v1 =

(
β

α

)
, v2 =

(
1

−1

)
.

Let us normalise the eigenvector corresponding to the eigenvalue 1 so that the entries sum to 1,

then we have

(
β

α+ β
,

α

α+ β
),

the stationary probability measure! Let

R =

(
β 1

α −1

)
, R−1 = − 1

α+ β

(
−1 −1

−α β

)
.

Then,

(P T )n = R

(
1 0

0 λn

)
R−1 1

α+ β

(
β + αλn β − βλn

α− αλn α+ βλn

)
.



Chapter 6

Strong Markov Property

6.1 Stopping Times

As usual, we have a probability space (Ω,F ,P) and X a complete separable metric space. When

we discuss a stochastic process (xn) ( with state space X ), we usually take the filtration to be

Fn = σ{x0, . . . , xn}.

Notation. a ∧ b = min(a, b), a ∨ b = max{a, b}.

Definition 6.1.1 An integer-valued random variable T is called a Fn-stopping time, if the

event {T = n} is Fn-measurable for every n ≥ 0. (The value T = ∞ is usually allowed as well

and no condition is imposed on its measurability.)

For a continuous time filtration (Ft)t≥0, we say that T : Ω → R+ ∪ {∞} is a stopping time if

{T ≤ t} ∈ Ft for every t ≥ 0.

Exercise 6.1.1 Show that T is an Fn-stopping time if and only if {T ≤ n} ∈ Fn.

Example 6.1.1 Let A ∈ B(X ), τA = inf{n ≥ 1 : xn ∈ A}, and σA = inf{n ≥ 0 : xn ∈ A}. Then

both are stopping times. Proof: {τA = 0} = φ ∈ F0. For n ≥ 1.

{τA = n} = ∩n−1
i=1 {xi ∈ A

c} ∩ {xn ∈ A} ∈ Fn,

This concludes that τA is a stoping time.

{σA = 0} = {x0 ∈ A} ∈ F0. For n ≥ 1.

{τA = n} = ∩n−1
i=0 {xi ∈ A

c} ∩ {xn ∈ A} ∈ Fn,

concluding that σA is a stoping time.

51
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Given a stopping time T and a Markov process x we introduce the stopped process, which is

denoted by (xTn ) or by (xT∧n):

xTn (ω) ≡ xn∧T (ω) =

{
xn(ω) if n ≤ T (ω),

xT (ω)(ω), otherwise.

Exercise 6.1.2 Let us consider the simple random walk xn =
∑n

i=1 ξi on Z, where {ξi} are

i.i.d’s such that

P(ξi = 1) =
1

2
, P(ξi = −1) =

1

2
.

Let τ be the first time after n = 1 that xn = 2. If ω is a sample such that (x0(ω) = 0, x1(ω) =

1, x2(ω) = 2, x3(ω) = 1, x4(ω) = 0, . . . . Write out the entire sequence (xT∧n(ω), n ≥ 0).

Example 6.1.2 (a) A constant time is a stopping time.

(b) T (ω) ≡ ∞ is also a stopping time.

Example 6.1.3 The following time is, in general, not a stopping time:

T = inf {n ≥ 0 : n is the last time that xn = 1}.

Proposition 6.1.2 Let S, T, Tn be stopping times.

(1) Then S ∨ T = max(S, T ), S ∧ T = min(S, T ) are stopping times.

(2) lim supn→∞ Tn and lim infn→∞ Tn are stopping times.

Proof. Part (1) follows from the following observations:

{ω : max(S, T ) ≤ n} = {S ≤ n} ∩ {T ≤ n} ∈ Fn,

{ω : min(S, T ) ≤ n} = {S ≤ n} ∪ {T ≤ n}. ∈ Fn.

Since

lim sup
n→∞

Tn = inf
n≥1

sup
k≥n

Tn, lim inf
n→∞

Tn = sup
n≥1

inf
k≥n

Tn

we only need to prove that if Tn is an increasing sequence, supn Tn is a stopping time; and if

Sn is a decreasing sequence of stopping times with limit S, infn Sn is a stopping time. These

follows from

{sup
n
Tn ≤ n} = ∩n{Tn ≤ n} ∈ Fn, {infS ≤ n} = ∪n{Sn ≤ n} ∈ Fn.
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6.2 The Stopped σ-algebra

Let F∞ = ∨∞n=0Fn.

Definition 6.2.1 If T is an Fn-stopping time, we define the associate σ-algebra to be

FT = {A ∈ F∞ : A ∩ {T = n} ∈ Fn, ∀n ∈ N}.

Note that A∩{T =∞} = A\∪∞n=1(A∩{T = n}) where A ∈ F∞ is always in F∞. In particular,

{T = ∞} ∈ F∞. If T ≡ n is a constant time, then FT agrees with Fn. The continuous time

version is:

FT = {A ∈ ∨t≥0Ft : A ∩ {T ≤ t} ∈ Ft,∀t ≥ 0}.

Lemma 6.2.2 If T is an Fn-stopping time, T is FT measurable.

Proof. For any integers m,n ≥ 0, {T = m}∩ {T = n} is either an empty set in case m 6= n or is

{T = n} ∈ Fn incase m = n. Also, This shows for any m, the pre-image {T = m} is in FT .

Exercise 6.2.1 Let S, T be (Ft, t ≥ 0)-stopping times.

(1) If S ≤ T then FS ⊂ FT .

(2) Let S ≤ T and A ∈ FS . Then S1A + T1Ac is a stopping time.

(3) S is FS measurable.

(4) FS ∩ {S ≤ T} ⊂ FS∧T .

(5) FT = Ft on {T = t}.

Proof. (1) If A ∈ FS ,

A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t} ∈ Ft

and hence A ∈ FT .

(2) Since FS ⊂ FT ,

{S1A + T1Ac ≤ t} = ({S ≤ t} ∩A) ∪ ({T ≤ t} ∩Ac) ∈ FT .

(3) Let r, t ∈ R, {S ≤ r} ∩ {S ≤ t} = {S ≤ min(r, t)} ∈ Ft. Hence {S ≤ r} ∈ Fr.

(4) Take A ∈ FS and t ≥ 0. Then

A ∩ {S ≤ T} ∩ {S ∧ T ≤ t} = A ∩ {S ≤ t} ∩ {S ∧ t ≤ T ∧ t} ∈ Ft.

which follows as S ∧ t and T ∧ t are Ft-measurable. Hence A ∩ {S ≤ T} ∈ FS∧T .
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(5) Let A ∈ FT , then A∩ {T = t} ∈ Ft by the definition. If A ∈ Ft, A∩ {T = t} ∩ {T ≤ s} ∈ Fs
for any s. Hence A ∩ {T = t} ∈ FT .

Below in Lemmas 6.2.3, Lemma 6.2.4, and Proposition 6.2.5, we motivate the definition for

FT . For this we work with a stopping time taking finite values only.

Lemma 6.2.3 Let (xn) be an adapted stochastic process. If T <∞ is a stopping time and (xn)

is adapted, then xT is FT -measurable, and so are xT∧m for any m ∈ N.

Proof. Let B be a Borel subset of X . Since T <∞, xT is well defined. For any m = 0, 1, 2,,...

{xT ∈ B} ∩ {T = m} = {xm ∈ B} ∩ {T = m} ∈ Fm,

showing that {xT ∈ B} ∈ FT and xT is FT -measurable. Similarly, for any n ≥ 0,

{xT∧m ∈ B} ∩ {T = n} = {xm∧n ∈ B} ∩ {T = n} ∈ Fn,

showing that xT∧m is FT -measurable.

Lemma 6.2.4 Let Fn = ∨ni=0σ(xi). If T <∞ is an (Fn)-stopping time, then for every k ≥ 0,

{T = k} ∈ σ(xT∧0, . . . , xT∧k).

Proof. The statement is equivalent to, for any k, 1{T=k} is of the form ϕk(σ(x0∧T , . . . xT∧k)),

where ϕk ∈ Bb(X k+1). Firstly, {T = 0} ∈ F0 = σ(x0∧T ). We prove this by induction on n

assume its holds for n = k − 1. Since {T = k} ∈ σ(x0, x1, . . . , xk), by the factorisation lemma,

we may assume that

1{T=k} = ψ(x0, x1, . . . , xk)

where ψ ∈ Bb(X k+1). Then

1{T=k} = 1{T=k}1{T≥k} = ψ1(x0∧T , . . . , xT∧k)1{T≥k} = ψ(x0∧T , . . . , xT∧k)(1− 1{T≤k−1}).

By the induction hypothesis, 1{T≤k−1} = ϕk−1(x0∧T , . . . , xT∧(k−1)), this completes the proof.

Proposition 6.2.5 Let (xn) be a stochastic process, Fn = σ(x0, . . . , xn). Set

σ(xT· ) := σ(xT∧n, n ≥ 0) ≡ ∨∞n=0σ(xn∧T ).

If T <∞ is an Fn-stopping time, then FT is the σ-algebra generated by the collection {xn∧T }n≥0:

FT = σ(xT· ).
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Proof. By Lemma 6.2.3 xT∧m is FT -measurable for any m ∈ N, showing that σ(xT· ) ⊂ FT .

For the converse of the theorem, let us take A ∈ FT . Then A ∩ {T = n} ∈ Fn which means

1A∩{T=n} = Ψ(x0, . . . , xn) for some Ψ ∈ Bb(X n+1). Hence

1A∩{T=n} = Ψ(x0, . . . , xn)1{T=n} = Ψ(x0∧T , . . . , xn∧T )1{T=n},

Since {T = n} ∈ σ(xT∧0, xT∧1, , . . . , xT∧n) the Lemma 6.2.4, 1A∩{T=n} is measurable w.r.t.

σ(xT· ). We thus conclude that A ∈ ∨∞n=1σ(xn∧T ) and FT ⊂ ∨∞n=1σ(xn∧T ).

Exercise 6.2.2 Let xn =
∑n

i=1 ξi be as in Example 6.1.2. Let x0 = 0, T the first time xn = 1.

Is the event {xn = 2} in FT ?

Problem Class 1

Exercise 6.2.3 (Ex. 2.2.2 Notes / Ex. 9 PS1)

Let X : Ω→ X and Y : Ω→ Y be random variables with X measurable with respect to G ⊂ F
and Y is independent of G. If ϕ : X × Y → R is measurable and bounded, show that

E(ϕ(X,Y )|G)(ω) = E(ϕ(X(ω), Y ), a.s. (6.1)

Solution from Piazza Forum. Fix A ∈ G, define ψ : X ×R×Y → R by ψ(x, z, y) = ϕ(x, y)z.

With Z = 1A, we are interested in ψ(X,Z, Y ) = ϕ(X,Y )Z = ϕ(X,Y )1A. Let ν = L((X,Z))

and µ = L(Y ), then

E[ψ(X,Z, Y )] =

∫
X×R

∫
Y
ψ(x, z, y)µ(dy)ν(dx, dz) = E

[∫
Y
ψ(X,1A, y)µ(dy)

]
= E

[∫
Y
ϕ(X, y)µ(dy) 1A

]
.

This implies (6.1), since

E[ϕ(X,Y )1A] = E[ψ(X,Z, Y )] = E
[∫
Y
ϕ(X, y)µ(dy) 1A

]
.

Standard Solution. It is sufficient to show (6.1) for ϕ(x, y) of the form ϕ(x, y) = f(x)g(y)

with f ∈ Bb(X ) and g ∈ Bb(Y). For A ∈ G,

E[ϕ(X,Y )1A] = E[f(X)g(Y )1A] = E[E[f(X)g(Y )1A|G]] = E[f(X)E[g(Y )|G]1A]

= E[f(X)E[g(Y )]1A],
(6.2)

which proves (6.1) for ϕ(x, y) = f(x)g(y). Then by suitable approximation (e.g. via simple

functions), (6.1) holds for general ϕ. �
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Monotone Class Solution.1 For any B1 ∈ B(X ) and B2 ∈ B(Y), the derivation (6.2) (with

f = 1B1 and g = 1B2) holds for the function ϕ(x, y) = 1B1×B2(x, y) = 1B1(x)1B2(y). Then, if

we consider

H = {ϕ ∈ Bb(X × Y) : equality (6.1) holds },
C = {B1 ×B2 : B1 ∈ B(X ), B2 ∈ B(Y)},

we can see that C is π-system and H is a vector space. By the observation above and monotone

convergence of expectation, we have

• The constant function ϕ(x, y) = 1 belongs to H,

• If B1 ×B2 ∈ C, then 1B1×B2 ∈ H,

• If fn ∈ H is an increasing sequence with fn ≥ 0 and fn ↗ f with f bounded, then f ∈ H.

So that by Monotone Class theorem (lemma below), we infer that any bounded σ(C)-measurable
function ϕ belongs to H, concluding the proof.2

Lemma 6.2.6 (Monotone Class theorem) Suppose that C is a π-system containing Ω, and H a class

of functions with the property:

1. 1 ∈ H,

2. If A ∈ C then 1A ∈ H,

3. H is a vector space,

4. If fn ∈ H is a non-negative increasing sequence of functions with limit f bounded (resp. f is finite),

then f ∈ H.

We can conclude that every bounded (resp. finite) σ(C)-measurable function is in H.

Exercise 6.2.4 (Markov Chain practice example)

Consider the time homogeneous Markov chain on X = {1, 2, 3}, with transition probabilities

P and initial distribution x0 ∼ ν = (1
2 ,

1
2 , 0). Recall that P is uniquely determined by Pij =

P (i, {j}) = P(x1 = j|x0 = i). We have

P =

0 1
2

1
2

1
3

1
3

1
3

0 1 0

 (6.3)

1. Compute the following probabilities:

P(x0 = 1, x1 = 2, x2 = 2), P(x1 = 2, x2 = 2|x0 = 1),

1Here we provide an alternative proof, using as main tool the powerful Monotone Class theorem, stated below.

This proof is longer/more detailed than the standard one you would be expected to provide.
2Note that C generates the Borel sigma algebra on X × Y.
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P(x0 = 1, x2 = 2), P(x3 = 1|x0 = 1), P(x0 = 1, x1 = 2, x3 = 2).

2. Starting from x0 ∼ ν, compute P(x1 = 1). Then compute the law of x1, i.e. L(x1) = µ1 =

(µ1(1), µ1(2), µ1(3)).

3. Compute the invariant distribution π (which satisfies πP = π).

Exercise 6.2.5 (Ex 1.1.1 Notes)

Let x0, ξ1, ξ2 be independent random variables on R. Let x0 ∼ N(0, a2), ξi ∼ N(0, b2) for all

i = 1, 2, . . . . Define for a positive number M > 0,

M(xn+1 − xn) = −bxn + ξn+1.

Find an invariant measure for this Markov chain.

Remark Note that (xn+1 − xn) can be recognised as the discrete derivative d
dt(x.) and then

(xn) as the discrete version of the Ornstein-Uhlenbeck process.

Solution. Rearranging, we have

xn+1 =

(
1− b

M

)
xn +

1

M
ξn+1 =: cxn + ηn+1, (6.4)

so that x1 = cx0 + ηn+1 is Gaussian if x0 is Gaussian. Hence, iteratively we have xn Gaussian if

x0 Gaussian. So, our guess for invariant probability measure needs to be a mean zero Gaussian.

If x0 ∼ N(0, a2), by (6.4) we have

L(x1) = N(0, c2a2 + b2/M2),

so that

L(x1) = L(x0)⇐⇒ a2 = c2a2 +
b2

M2
.

Thus we require

a2 =
b2

M2(1− c2)
. (6.5)

Given (6.5), we then have L(x0) = L(x1) = L(x2) = · · · = L(xk), for all k ≥ 1 and L(x0) =

N(0, a2) is the invariant measure.

The discrete Ornstein-Uhlenbeck process, starting from the invariant probability measure

N(0, a2) computed in Ex. 6.2.5, is a stationary Markov process.

6.3 Strong Markov Property

The interest of the definition of a stopping time is that if T is a stopping time for a time-

homogeneous Markov process x, then the process xT+n is again a Markov process with the same
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transition probabilities. Stopping times can therefore be considered as times where the process

x “starts afresh”. This is stated more precisely in the theorems below.

Notation. If (xn) is a stochastic process, for each ω, we have a sequence (x0(ω), x1(ω), . . . )

in XN. This is also denoted by x·(ω). The process is a map from Ω to X , thus can be denoted

as x·, where the script dot means we think x·(ω) as an element of XN.

Note. We emphasize that by a Markov process we mean a time homogeneous Markov process

with transition probabilities.

Recall the shift operators θt, where t ∈ N,

θt : XN0

→ XN0

(an, n ≥ 0) 7→ (at+n, n ≥ 0).

We also define:

(θTx·)n = xT+n

This means for ω ∈ Ω and n ≥ 0, (θTx·)n is a random variable given by (θTx·)n(ω) = xT (ω)+n(ω).

The shift Markov process starts from xT . Observe that xT+n is measurable with respect to FT+n.

Definition 6.3.1 A time-homogeneous Markov process (xn) with transition probabilities P is

said to have the strong Markov property if for every finite stopping time T and for every bounded

measurable function Φ : XN → R, the following holds:

E
(
Φ(θTx·) | FT

)
= E

(
Φ(θTx·) |XT

)
a.s. (6.6)

Remark 6.3.2 Let us consider Borel measurable function on the path space XN with the

product σ-algebra, which are generated by cylindrical sets of the form {πn1 ∈ A1, . . . , πnm ∈ Am}
where n1 < n2 < · · · < nm is a set of times, and Ai are measurable sets from X . The collections

of such cylindrical sets is a π-system. A property on measurable functions on X are typically

determined by that of the functions of the following form (called cylindrical functions): for

n1 < n2 < · · · < nm and f : Xm → R Borel measurable,

Φ(σ) = f(σn1 , . . . , σnm).

Even simpler, it is sufficient to take Φ(σ) = Πm
i=1fi(σni) where fi ∈ Bb(X ).

Remark 6.3.3 (1) For simplicity let us define yn = xT+n. Set Gn = FT+n. If (6.6) holds

for every finite stopping time T for xn then for every bounded Borel measurable function

f : X → R, the following holds

E(f(yn+m)|Gm) = E(f(xT+n+m)|FT+m)
(6.6)
= E(f(xT+n+m)|xT+m)

= E(f(yn+m)|ym),
.
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(2) Note that if the following holds for any measurable subset A of X and any time n:

P(xn+T ∈ A|FT ) = Pn(xT , A). (6.7)

then for every bounded Borel measurable function f ,

E(f(xn+T )|FT ) =

∫
f(y)Pn(xT , dy). (6.8)

Exercise 6.3.1 If P(xn+T ∈ A|FT ) = Pn(xT , A) holds for every measurable set A, then

P(xn1+T ∈ A1, . . . xnm+T ∈ Am|FT ) = P(xn1+T ∈ A1, . . . xnm+T ∈ Am|xT ), (6.9)

or equivalently, for bounded measurable functions fi,

E(Πm
i=1fj(xnj+T )|FT ) = E(Πm

i=1fj(xnj+T )|xT ). (6.10)

6.3.1 Markov property at finite stopping times

Recall that given any probability distribution µ and any transition probabilities P there exists

a unique probability measure Pµ on X∞ which is the probability distribution of a Markov

process (we sometimes denote such a process by Xx
· ) with transition probabilities P and initial

distribution Pµ. If µ = δs, this is denoted by Px. If Φ : X∞ → R is bounded and measurable,

we write Ex[Φ] for the integral of Φ with respect to Ps,

Ex[Φ] =

∫
X∞

Φ dPx.

Using the process Xx
· , this is E[Φ(Xx

· )].

Example 6.3.1 Let (xn) is the Markov chain with transition probabilities P and initial condi-

tion x. If Φ(σ) = f(σ3, σ7) for some g : X 2 → R, then

Ex[Φ] = E[f(x3, x7)] =

∫
f(y1, y2)P 3(x, dy1)P 4(y1, dy2),

If Φ = πmi=1fi ◦ πi, where π are the projections (coordinate mappings) and fi ∈ Bb(X ), then

Ex[Φ] =

∫
X
· · ·
∫
X

Πm
i=1fi(yi)Π

m
i=1P

ni−ni−1(yi−1, dyi).

The measure Πm
i=1P

ni−ni−1(yi−1, dyi) is the finite dimensional distribution of (xn1 , . . . , xnm).

If y is a random variable, we then denote Ey[Φ] for the composition:

Ey[Φ](ω) := Ey(ω)[Φ].

Similarly for C ∈ ⊗∞B(X ), Py(C)(ω) = Py(ω)(C).

By a finite stopping time we mean one that is almost surely finite.
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Theorem 6.3.4 (Strong Markov property) Let (xn) be a time-homogeneous Markov pro-

cess with transition probabilities P . If T is a finite stopping time, the process (θTx)n is also a

time-homogeneous Markov process with transition probabilities P . Furthermore if Φ : XN → R

is bounded Borel measurable

E
(
Φ(θTx·) | FT

)
= ExT

[
Φ
]
.

In particular,

P(xn+T ∈ A|FT ) = Pn(xT , A), a.s.

for any n > 0 and any A ∈ B(X ). It follows that x has the strong Markov property.

The proof will be given after the lemma.

Lemma 6.3.5 Let (xn) be a time-homogeneous Markov process with transition probabilities P

and if T is a finite stopping time then

P(xn+T ∈ A|FT ) = Pn(xT , A), a.s.

for any n > 0 and any A ∈ B(X ).

Proof. Since T < ∞ a.s., Ω = ∪∞n=0{T = n} ∪ C where C = {T = ∞} has measure zero. For

any f bounded measurable from X to R,∫
B
f(xn+T ) dP =

∞∑
m=0

∫
B∩{T=m}

f(xn+m) dP

=
∞∑
m=0

∫
B∩{T=m}

E(f(xn+m) | Fm) dP

=

∞∑
m=0

∫
B∩{T=m}

∫
f(y)Pn(xm, dy) dP =

∞∑
m=0

∫
B∩{T=m}

∫
X
f(y)Pn(xT , dy) dP

=

∫
B

∫
X
f(y)Pn(xT , dy) dP.

In the second line we have used the fact that B ∩ {T = m} ∈ Fm. This shows that

E(f(xn+T ) |FT ) =

∫
X
f(y)Pn(xT , dy), (6.11)

completing the proof.

Proof for Theorem 6.3.4. Let Gn = FT+n and yn = xT+n then y is adapted to G and

P(yn+m∈A|Gn) = Pm(yn, A), so indeed, y· := θTx· is a a time-homogeneous Markov process with

transition probabilities P . For the rest of the statement, it is sufficient to take Φ to be the

indicator functions of cylindrical sets. Let

Φ(σ) = Πm
i=1fi(xni),
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We assume that for any fj ∈ B(X ) and any M ≤ k − 1, the required identity

E
(
ΠM
i=1fi(xT+ni) | FT

)
= ExT [ΠM

i=1fi] =

∫
X
. . .

∫
X

ΠM
i=1fi(yi)Π

M
i=1P

ni−ni−1(yi−1, dyi)

holds. We make induct on k, first taking an extra layer of conditional expectation then use

(6.11), and then the induction hypothesis:

P
(
Πk
i=1fi(xT+mi)|FT

)
= E

[
Πk−1
i=1 fi(xT+mi)E(fk(xT+mk) | FT+mk−1

) | FT
]

= E

[
Πk−1
i=1 fi(xT+mi)

∫
X
fk(yk)P

mk−mk−1(xT+mk−1
, dyk)|FT

]
=

∫
X
. . .

∫
X

Πk−1
i=1 fi(yi)

∫
X
fk(yk)P

mk−mk−1(yk−1, dyk)Π
m
i=1P

mi−mi−1(yi−1, dyi)∫
X

Πk
i=1fk(yk)Π

k
i=1P

mi−mi−1(yi−1, dyi).

This complete the proof.

6.3.2 Markov property at non-finite stopping times

Lemma 6.3.6 If A is any subset of Ω and F a σ-algebra then F ∩ A = {B ∩ A : B ∈ F} is a

σ-algebra on A. This is called the trace σ-algebra.

Going over the proof for the strong Markov property, we observe that we used the assumption

that T is finite in two ways: (1) ∪∞n=0{T = n} = Ω, (ii) xT can be defined. This proof can be

modified to yield a corresponding result for stopping times that is not necessarily finite. In this

case ∪∞n=0{T = n} = {T < ∞} and so we have to limit ourselves on this set. Restricted to the

set {T <∞}, xT is defined.

Let T be a stopping time. Then {T <∞} is a subset of FT , we may condition on FT ∩{T <

∞}. Now we can state the modified theorem:

Theorem 6.3.7 Let (xn) be a time-homogeneous Markov process with transition probabilities P

and let T be a stopping time. Let Φ : X∞ → R be a function. Then on the set {T <∞},

E(Φ(θTx·) | FT ) = ExTΦ(x·).

In other words,

E
(
Φ(θTx·)1{T<∞} | FT

)
= ExT [Φ]1{T<∞}.

Proof This is left as an exercise. We demonstrate the proof for Φ depending only one coordi-

nate, the proof for Φ depending on a finite number of coordinates is the same. Let f : X → R
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be bounded measurable, and B ∈ FT ,∫
B∩{T<∞}

f(xn+T )dP =

∞∑
m=0

∫
B∩{T=m}

f(xn+T ) dP =

∞∑
m=0

∫
B∩{T=m}

f(xn+m) dP

=
∞∑
m=0

∫
B∩{T=m}

E(f(xn+m) | Fm) dP =
∞∑
m=0

∫
B∩{T=m}

E(f(xn+m) |xm) dP

=
∞∑
m=0

∫
B∩{T=m}

E(f(xn+T ) |xT ) dP =

∫
B∩{T<∞}

E
(
f(xn+T )1{T<∞} |xT

)
dP.

We may conclude that on the set 1{T<∞}

E(f(xn+T )1{T<∞}|FT ) = E
(
f(xn+T )1{T<∞} |xT

)
.

We can also interpret this as

1{T<∞}E(f(xn+T )|FT ∩ {T <∞}) = 1{T<∞}E(f(xn+T ) |xT ),

concluding the proof.

As an application to Theorem 6.3.7, we study an example.

Example 6.3.2 Simple Random Walk on Z. Let ξ be i.i.d. such that P(ξ = ±1) = 1/2, and

define Sn = x +
∑n

i=1 ξ, letting x = 0. Define Ti = inf{n ≥ 0, Sn = i} and we use the notation

Pi(. . . ) = P(. . . |x0 = i). We will show later in Example 7.5.3 that P1(T1 <∞) = 1. Let us use

this and the strong Markov property to show that P0(T1 <∞) = 1.

Proof. We give one proof, another proof is given later in Example 7.10.3. Suppose for a

contradiction P0(T1 <∞) < 1. Let B = {ω : ∃path from 1, passing through 0}. If ω ∈ B, once

S.(ω) has reached 0, it restarts as a random walk (with x = 0) and with positive probability

it does not reach 1, since P0(T1 < ∞) < 1. Hence we deduce that P1(T1 < ∞) < 1 too,

contradicting recurrent property. Formally,

P1(T1 =∞) ≥ P1(T1 =∞, T0 <∞) = E1(P1(T1 =∞|FT0)1T0<∞)

= E1

(
PST0 (T1 =∞)1T0<∞

)
= E1(P0(T1 =∞)1T0<∞)

= P0(T1 =∞)P1(T0 <∞),

We used the strong Markov property in the second line. Since both P1(T0 < ∞) > 0 (path

existence) and P0(T1 = ∞) > 0 (assumption for contradiction), we infer P1(T1 = ∞) > 0,

violating the fact that P1(T1 <∞) = 1.



Chapter 7

Time Homogeneous Markov Chains

on Discrete State Spaces

Let us consider time homogenenous Markov Chains (THMC) (xn) on discrete state space X . If X
has a finite number of elements, we shall consider X = {1, 2, . . . , N}, otherwise X = {1, 2, . . . }.
If the THMC (xn) has transition probabilities P = (Pij) on X with initial distribution ν = L(x0),

then the distribution of xn is νPn = L(xn).

The number Pij should be interpreted as the probability of jumping from state i to state j

and and Pnij = P(xn = j|x0 = i). Thus,
∑

j∈X Pij = 1 for every i. For a finite state space we

have a matrix P = (Pij). If X is a countable space, we have a matrix with infinite entries, and∑∞
i=1 Pij = 1.

Definition 7.0.1 We call a matrix P with positive entries which satisfies
∑N

i=1 Pij = 1 for all

j a stochastic matrix.

The initial distribution ν is represented by a row vector on [0, 1]X with i-th entry ν({i}). We

use shorthand notation ν(i) or νi for ν({i}). Thus (νP )(i) =
∑

k∈X ν(k)Pki. If the size of X is

finite, i.e. #(X ) = N , ν is a row vector, P is an N × N matrix and νP is a matrix product.

In the finite case, the space of signed measures is identified in a natural way with RN in the

following way. Given a measure µ on X , we associate to it the vector a ∈ RN by ai = µ({i}).
Reciprocally, given a ∈ RN , we associate to it a measure µ by µ(A) =

∑
i∈A ai. From now on,

we will therefore use the terms “vector” and “measure” interchangeably and use the notation

µi = µ(i) = µ({i}). The set of probability measures on X is thus identified with the set of

vectors in RN which have non-negative entries that sum up to 1. In this context, a transition

operator T : P(X ) → P(X ) is a linear operator from RN to RN which preserves probability

measures.

63
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7.1 Communication Classes - Lecture 8

We demonstrate this with X = {1, . . . , N}. Fixing an arbitrary stochastic matrix P of dimension

N , we can associate to such a matrix Pij an oriented graph, called the incidence graph of P

by taking X = {1, . . . , N} as the set of vertices and by saying that there is an oriented edge

going from i to j if and only if Pji 6= 0. This strategy works well for chains with a manageable

number of states.

Example 7.1.1 For example, take P below. If Pij 6= 0, we draw an oriented graph and obtain

the incidence graph. Following the arrows in the graph, we can reach any vertex from any other.

P =

0 1
2

1
2

1 0 0
1
3

1
3

1
3


1 2

3

From 2, we can see P21 > 0 and P13 > 0, so that

P 2
23 = P(x2 = 3|x0 = 2) = P21P13 > 0.

Example 7.1.2 Another example is

P =
1

10


0 5 5 0

3 7 0 0

0 10 0 0

2 8 0 0

 Note

that the 4th row of P is zero, which implies that the vertex 4 can not be reached by any walk

on the graph that follows the arrows.

Still in this finite state situation, we call a transition matrix P irreducible if it is possible to go

from any point to any point of the associated graph by following the arrows. Otherwise, we call

it reducible. This is to make sure that the chain is really one single chain. At an intuitive level,

being irreducible means that every point will be visited by our Markov process. Otherwise, the

state space can be split into several sets in such a way that if one starts the process in some

minimal sets Ai it stays in Ai forever and if one starts it outside of the Ai’s it will eventually

enter one of them. A general stochastic matrix is not irreducible. It can however be broken

up into irreducible components in the following way. The set {1, . . . , N} is naturally endowed

with an equivalence relation by saying that i ∼ j if and only if there is a path on Γ going from

i to j and back to i (we make it an equivalence relation by writing i ∼ i regardless on whether

Pii > 0 or not). In terms of the matrix, with the convention that P 0 is the identity matrix, we

make the following definition. For example, the matrix given in (7.1.2) is reducible because it is

impossible to reach 4 from any of the other points in the system.
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Let us now give the definition that applies to a countable state space., in which case the

stochastic matrix has infinite number of rows and columns.

Definition 7.1.1 Let X be a countable space, we have the following definitions:

1. We say that j is accessible from i, if Pnij > 0 for some n. This is denoted in symbol by i→ j.

2. Two states i and j are said to communicate with each other, if there exist m,n ≥ 0 such

that Pnij > 0 and Pmji > 0. This is denoted by i ∼ j.
3. The set of states [i] = {j ∈ X : j ∼ i} is the communication class containing i.

4. A chain is said to be irreducible if there exists only one communication class, otherwise is

reducible.

In the case of Example (7.1.2), we have [1] = {1, 2, 3} and [4] = {4}.

Example 7.1.3 Similarly to previous example we can observe from the incidence graph below

that in this case the states {1, 2, 3} cannot be reached from 4. P =
1

5


1 1 0 2 1

0 0 5 0 0

1 1 1 1 1

0 0 0 3 2

0 0 0 3 2


2

1 3

4 5

In this example, the chain is reducible as we have two communication classes

[1] = {1, 2, 3}, [4] = {4, 5}.

Exercise 7.1.1 Check ∼ defines an equivalence relation.

Lemma 7.1.2 If i → j, i.e. j is accessible from i, then any j′ ∈ [j] is accessible from any

element i′ ∈ [i].

j′jii′

Pn1
i′i

Pmij Pn2
jj′

Proof. Fixed j′ ∈ [j] and i′ ∈ [i], we want to show that there exists n with Pni′j′ > 0. By

assumption, there exist some n1, n2,m such that Pmij > 0, Pn1
i′i > 0 and Pn2

jj′ > 0.

Then by Chapman Kolmogorov equation,

Pn1+m+n2
i′j′ =

∑
k∈X

∑
l∈X

Pn1
i′kP

m
kl P

n2
lj′ ≥ P

n1
i′i P

m
ij P

n2
jj′ > 0.
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This implies i′ → j′.

This means the set of equivalence classes is endowed with a partial order ≤: we say that

[i] ≤ [j] if we can access an element of [i] form an element of [j]. Equivalently, there exist a path

from j to i of positive probability.

Remark 7.1.3 For a finite state space, [i] ≤ [j] if and only if there is a path on Γ going from j to

i. In Example (7.1.2), one has [1] ≤ [4]. Note that this order is not total, so it may happen that

one has neither [i] ≤ [j] nor [j] ≤ [i]. By construction, we see that every Markov process {xn}
with transition probabilities P satisfies [xn+1] ≤ [xn] for every n. It seems therefore reasonable

that every Markov process with transition probabilities P eventually ends up in one of the states

in the minimal classes (the recurrent states). This justifies the terminology “transient” for the

other states, since they will only ever be visited a finite number of times.

Exercise 7.1.2 Check that the relation ≤ defined above is indeed a partial order.

Definition 7.1.4 An equivalence class [i] is said to be minimal if there exists no j such that

[j] ≤ [i] and [j] 6= [i]. A minimal class is also said to be closed.

Returning to example 7.1.3, we have 1→ 4 and [4] ≤ [1], implying [4] is the minimal class.

Remark 7.1.5 The state X can be decomposed, it is the disjoint unions of the communication

classes. If [i] is closed, there is no path from any k ∈ [i] to the other communication classes. In

other words, for any k ∈ [i] and j 6∈ [i], there is no path from k to j.

Example 7.1.4 Consider a stochastic matrix such that the associated graph is given by

1 2 3 4

5 6 7

In this case, the communication classes are given by

[1] = {1} , [2] = {2} , [3] = {3} ,

[4] = {4, 7} , [5] = {5, 6} .

One furthermore has the relations [5] ≤ [2] ≤ [1], [3] ≤ [4], and [3] ≤ [2] ≤ [1]. Note that [4] and

[2] for instance are not comparable.
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Example 7.1.5 Consider the stochastic matrix P with its incidence graph

P =



1
3 0 2

3 0 0 0 0

0 1
2 0 1

2 0 0 0
1
3 0 0 1

3 0 1
3 0

0 0 0 0 1
2 0 1

2

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0



6

1 3

2 4 5

7

The communication classes are: [1] = {1, 3}, [6] = {6}, [2] = {2, 4, 5, 7}. The partial orders

are: [6] ≤ [1], [2] ≤ [1]. Thus, [6] and [2] are minimal classes.

Definition 7.1.6 Let Ti = inf{n ≥ 1 : xn = i}. If x0 = i, Ti is the first return time to site i.

Note that

{Ti ≤ n} = ∪kk=1{xk = n}.

We are interested in the question with what probability a chain starting from i returns to i, or

whether a chain from j can reach i with positive probability.

Example 7.1.6 Let us return to the two state Markov chain, take x0 ∼ µ, then we use Pµ to

denote the probability concerning the chain with x0 ∼ µ.

Pµ(T0 = 1) = Pµ(x1 = 0) = µ(0)(1− α) + µ(1)β.

If x0 = δ0,

P0(T0 = 1) = 1− α,

For n ≥ 1,

P0(T0 = n) = P(x1 = 1, . . . , xn−1 = 1, xn = 0|x0 = 0) = α(1− β)n−2β.

P0(T0 <∞) =
∞∑
n=1

P0(T0 = n) = (1− α) +
∞∑
n=2

α(1− β)n−2β = 1.
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Example 7.1.7 (A Lazy Walker (Birth and Death Process) )

Let us consider the Markov Chain on state space X = Z with transition P given by

Pij =


1
2 if i = j,
1
4 if j = i− 1,
1
4 if j = i+ 1.

⇒ P =
1

4



. . .
. . .

. . . 2 1

1 2 1

1 2
. . .

. . .
. . .


. (7.1)

Let j − i = n, then, as in the argument of Lemma 7.1.2 we have

Pnij ≥ Pi i+1 · · ·Pj−1 j ≥
(

1

4

)n
, Pnji ≥ Pj j−1 · · ·Pi+1 i ≥

(
1

4

)n
.

Hence the chain is irreducible.

We can now answer whether there exists an invariant measure for P , which means there exists

a solution ν to νP = ν. By the note above, νP = ν is equivalent to require for any j ∈ X that

ν(j) = (νP )(j) =
∑
i∈X

ν(i)Pij .

Since Pjj = 1
2 and Pj j+1 = Pj j−1 = 1

4 , all other Pij vanish,

ν(j) =
1

4
ν(j − 1) +

1

4
ν(j + 1) +

1

2
ν(j) =⇒ ν(j)− ν(j − 1) = ν(j + 1)− ν(j). (7.2)

Hence any ν with ν(j) constant for all j satisfies the relation (7.2). Such a ν is a uniform

measure on X , but not a probability measure.

One may wonder if there exists any other solution to νP = ν? Let ν(0) = a ≥ 0. Suppose that

b = ν(j + 1) − ν(j) > 0. Then ν(j) will be negative for j < 0 sufficiently small. Similarly if

b < 0, ν(j) becomes negative for j sufficiently large. So there exists only one solution, up to a

multiplicative constant, with ν(j) ≥ 0. This is the uniform measure.

Conclusion. For the lazy walk, there exists a measure with νP = ν, which is unique up to a

multiplicative constant, but no invariant probability measure.

7.2 Recurrence and Transience

There are further important properties of THMC communication classes. Let Ti = inf{n ≥ 1 :

xn = i}.

Definition 7.2.1 A state i is recurrent if P(Ti < ∞|x0 = i) = 1. Otherwise it is said to be

transient.
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Notation. For brevity we may use the following notation Pi(A) := P(A|x0 = i), so that

Pi(Ti <∞) = P(Ti <∞|x0 = i); also we denote Ei(Y ) := E[Y |x0 = i] for an integrable random

variable Y .

Definition 7.2.2 A Markov chain on X is recurrent if every state i ∈ X is recurrent; it is

transient if every state is transient.

We will see later that the existence of a recurrent state implies the existence of an invariant

measure. Also, a state i is recurrent if and only it is visited infinitely often almost surely. And

also, being transient/recurrent is a class property, a property of the communication class. At

this point we note:

Lemma 7.2.3 Given two states i, j ∈ X , then i→ j if and only if Pi(Tj <∞) > 0. Moreover

Pi(Tj <∞) ≤
∞∑
n=1

Pnij (7.3)

Proof. The (⇒) direction holds trivially, as {Tj <∞} =
⋃∞
n=1{Tj = n}.

For the other direction (⇐), we can derive (7.3) by

Pi(Tj <∞) ≤
∞∑
n=1

Pi(Tj = n) ≤
∞∑
n=1

Pi(xn = j) =

∞∑
n=1

Pnij .

Hence Pi(Tj <∞) > 0 implies that Pnij > 0 for some n.

Exercise 7.2.1 Are the states in Example 7.1.1 recurrent?

7.2.1 Another way for guessing the invariant measures –Lecture 9

Whether a state i is recurrent is an important question of its own. It is actually associated with

the existence of an invariant probability measure (an equilibrium).

Let us start with an example. P =

0 1 0
1
2 0 1

2

1 0 0


1

2 3

Two paths loop back to 1: ω1 : 1 −→ 2 −→ 1 and ω2 : 1 −→ 2 −→ 3 −→. Each of these

paths occurs with probability 1
2 . The state 2 is visited on both paths, so we give it weight 2.

The state 3 is visited on path 2, it is visited on the average 1
2 times. Let us define ν = (1, 1, 1

2).

Check this is an invariant measure for P . Do you expect this to hold more generally?
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7.3 Passage times

Throughout this section xn is a time homogeneous Markov chain. For the following lemma, let

us define:

T 0
j := 0, T 1

j = Tj , Tn+1
j = inf{k > Tnj : xk = j} for n ≥ 1. (7.4)

The stopping times Tnj are also called the passage times to j, the times Tnj −T
n−1
j are the length

of the n-th excursion to the state j.

Lemma 7.3.1 Let i, j ∈ X . If j is recurrent and Pj(Ti < ∞) > 0, then Pi(Tj < ∞) = 1. If µ

is an initial distribution supported on [j], then Pµ(Tj <∞) = 1.

We first give an hand waving argument. If Pi(Tj < ∞) < 1, then exists a set of path A which

starts from i never coming back to j. Since Pj(Ti < ∞) > 0, j can access i, there is a path of

shortest length m from j to i. We concatenate this path to a path from A that starts from j

never visits i, thus obtaining a set of paths from i, never returns to i. This means Pi(Ti <∞) < 1

contradicting with the assumption.

Proof. It is sufficient to prove this statement for µ = δj . Since Pi(Tj < ∞) > 0, j is

accessible from i. Let m be the smallest number such that Pmij > 0, which means that

Pi(x1 6= j, . . . , xm−1 6= j, xm = j) > 0. Suppose that Pj(Ti = ∞) > 0, this mean once in j

the paths has positive probability not returning to i. Our conclusion follows by the reasoning

below:

Pi(Ti =∞) ≥ Pi(Ti =∞, Tj = m) = E[P(Ti =∞, Tj = m|FTj )]
= E[P(xTj+` 6= i,∀` ≥ 1, Tj = m|FTj )] = E[P(xTj+` 6= i,∀` ≥ 1|FTj )1Tj=m]

= Pj(Ti =∞)Pi(Tj = m) > 0.

This is in contradiction with i recurrent. In the final line we used the Markov property, noting

that {x0 = i, Tj = m} = {x1 6= j, . . . , xm−1 6= j, xm = j, x0 = i} and the fact that m is the

shortest length of a path from i to j, so a path from i to j in m-steps does not visit i for

n = 1, . . . ,m.

An alternative proof with elementary probability is as follows. Let B = {x0 = i, xk 6∈ {i, j}, k =

1, . . . ,m − 1, xm = j}. Then m is the shortest length from i to j implies that {x0 = i, Tj =

m} = B and

Pi(Ti =∞) ≥ Pi(Ti =∞, Tj = m) = P(x0 = i, xk 6= i,∀k ≥ 1, Tj = m)

= P({x0 = i, Tj = m} ∩ {xm+` 6= i,∀` ≥ 1})
= P({xm+` 6= i,∀` ≥ 1}|x0 = i, Tj = m)Pi(Tj = m)

= Pj(Ti =∞)Pi(Tj = m) > 0.
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The following lemma on inter-arrival times is primarily interesting for irreducible recurrent

chains.

Lemma 7.3.2 Let xn be a Markov process starting with initial distribution µ and Pµ(Tj <∞) =

1 for a recurrent state j. Then, the intervals {Tnj − T
n−1
j }n≥1 are independent. And for any

k ≥ 1, m ∈ X ,

P
(
T k+1
j − T kj = m

)
= Pj(Tj = m).

Proof. Suppose that a state j is recurrent, i.e. Pj(Tj < ∞) = 1. We fix this j and set T = Tj
and for T k = T kj for k ≥ 2 for simplicity. Then

θTk(x·) =
(
xTk , xTk+1, . . . , xTk+2, . . . ,

)
.

By the strong Markov property, for k ≥ 1,

P
(
T k+1 − T k = m|FTk

)
(ω) = Px

Tk
(ω)

(
T = m

)
= Px

Tk
(ω)

(
x1 6= j, . . . , xm−1 6= j, xm = j

)
= Pj

(
x1 6= j, . . . , xm−1 6= j, xm = j

)
= Pj(T = m).

The second line follows from the strong Markov property and that T k+1 − T k = m if and only

if (xTk+1 6= j, . . . , xTk+m−1 6= j, xTk+m = j). (From the point of view of the shifted process

θTkx·), this is the hitting time of j.) Taking expectations we see that

P
(
T k+1 − T k = m

)
= Pj

(
x1 6= j, . . . , xm−1 6= j, xm = j

)
= Pj(T = m).

To see that {T kj − T k−1
j } are independent random variables, it is sufficient to observe that

P(T k+1 − T k = m|FTk)(ω) is a deterministic event. In fact, for any A ∈ FTk , we have

E
(
1A1{Tk+1−Tk=m}

)
= E

(
1APj(T = m)

)
= P(A)Pj(T = m),

where in the first equality we conditioned w.r.t. FTk inside expectation. Hence {T k+1−T k = m}
is independent of FTk and Tj ∈ FTk for any j = k − 1. We conclude that {T 0, T 2 − T 1, T 3 −
T 2, . . . } are independent random variables.

Remark 7.3.3 For those with curious mind, let us check the case where the THMC does not

reach j with probability one from its initial state.

1. Then by the strong Markov property, Theorem 6.3.7, we see that

P(T k+1
j − T kj = m,T kj <∞|FTkj ) = Pj(Tj = m)1Tkj <∞

,
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taking expectation to see that P(T k+1
j − T kj = m,T kj < ∞) = Pj(Tj = m)Pi(T kj < ∞), so

For any m ∈ X , and any any initial distribution,

P(T k+1
j − T kj = m | T kj <∞) = Pj(Tj = m).

In the above statement, we do not specify an initial distribution.

2. Do we maintain the statement that the passage times are independent if j is not recurrent?

For any statement of the kind, we must assign a value to T k+1
j −T k when T kj =∞. Let us

define a family of identically distributed independent random variables ξl : X → N∪{+∞}
with P(ξl = m) = Pj(Tj = m). Set η1 = Tj , and for k ≥ 1,

ηk+1 =

{
T k+1
j − T kj , if T kj <∞,
ξk+1, otherwise.

Claim: {ηk} are independent random variables. Indeed, let Gk = FTkj ∨σ{ξ2, . . . , ξk}. Let

k ≥ 2,

P(ηk = m|Gk) = P(T k+1
j − T kj = m,T kj <∞|Gk) + P(ξk+1 = m,T kj =∞|Gk)

= 1Tkj <∞
Pj(Tj = m) + P(ξk+1 = m|Gk)1Tkj =∞

= 1Tkj <∞
Pj(Tj = m) + Pj(Tj = m)1Tkj =∞ = Pj(Tj = m).

We used that ηk+1 is independent of Gk. Since P(ηk = m|Gk) is a constant, we conclude

that ηk is independent of Gk.

Note that Tnj =
∑n

k=1(T kj − T
k−1
j ) and {Tnj < ∞} = ∩nk=0{T kj − T

k−1
j < ∞}. This motivates

the following useful lemma.

Lemma 7.3.4 For any two states i, j, any natural number k ≥ 1,

Pi(T k+1
j <∞) = Pi(Tj <∞) · Pj(T kj <∞). (7.5)

In particular, for any j ∈ X , and k = 2, . . . ,

Pj(T kj <∞) =
(
Pj(Tj <∞)

)k
. (7.6)

Proof. Let Φ : X∞ → R be the function defined below:

Φ((an)) =

{
1, if an1 = j, . . . ank = j for some 1 ≤ n1 < n2 < · · · < nk,

0, if otherwise.

Thus, Φ = 1A where A contains sequences that visits j at least k-times at some finite time

n ≥ 1.
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Then, on {Tj <∞}, T k+1
j (ω) <∞ if and only if

Φ
(
θTjx·(ω)

)
= 1.

We apply the strong Markov property (Theorem 6.3.7 for stoping times that are not necessarily

finite) to obtain:

E
(
1{Tk+1

j <∞}1{Tj<∞}|FTj
)

= E
(

Φ(θTjx·)1{Tj<∞}|FTj
)

= 1{Tj<∞}ExTj

(
Φ(x·)

)
= 1{Tj<∞}Pj(T

k
j <∞).

Since xTj = j, we take the expectation (conditional on x0 = j) on both sides to obtain that:

Pi(T k+1
j <∞) = Pi(Tj <∞)Pj(T kj <∞).

(Owning to the tower property, the left hand side becomes E
(
1{Tk+1

j <∞}1{Tj<∞}|x0 = j
)

.

The second indicator function can be removed as it poses no restriction: 1{Tk+1
j <∞}1{Tj<∞} =

1{Tk+1
j <∞}.) We use the fact that xTj = j. The expression Ej(Φ(x·)) is the same Ej [Φ] the

latter means integration of Φ with respect to the probability measure of the chain with initial

distribution Pδj the first is integration on the probability space of the random variable Φ ◦ x·
and x0 = j. One can now take the expectation (conditional in x0 = j) on both sides to obtain

that:

Pi(T k+1
j <∞) = Pi(Tj <∞)Pj(T kj <∞).

The right hand side is obvious, since Pj(T kj < ∞) is non-random. On the left hand side,

1{Tk+1
j <∞}1{Tj<∞} = 1{Tk+1

j <∞}, and

E
(
Ei

(
1{Tk+1

j <∞}|FTj
))

= Ei

(
1{Tk+1

j <∞}
)

= Pi(T k+1
j <∞).

Take i = j, we see that

Pj(T k+1
j <∞) = Pj(Tj <∞)Pj(T kj <∞).

Inducting on k, we see that Pj(T k+1
j <∞) = Pj(Tj <∞)k+1.

Example 7.3.1 This example is not given in the lectures. Let us look at a Markov model.

Suppose that customers arrive independently. We represent their arrival as 1 and their departure

as 0, and denote it by Xn. Assume Xn are i.i.d. Bernoulli random variable on {0, 1} with

P(Xi = 1) = p. Then (Xn) is a Markov process with P(Xn = 1|Xn−1 = j) = p fro any j ∈ {0, 1}.
Let T be a stopping time, e.g. the first arrival time of somebody with surname started from A.

Then X1+T , X2+T , . . . is also a Markov process with the same transition probability.

Let Sn denote the number of arrivals, then

Sn = X1 + · · ·+Xn
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then Sn is binomial distributed:

P(Sn = k) =

(
n

k

)
pk(1− p)n−k.

Let T be the first arrival time, i.e. the first time Sn = 1. Then T is geometrically distributed:

P(T = k) = P(X0 = 0, . . . , Xk−1 = 0, Xk = 1) = (1− p)kp.

E[T ] = 1
p . Since Sn is Markov, fixing m, the first time after m a customer arrives is also

geometrically distributed. Let S1 denote the first time there is an arrival from Xm+1, Xm+2, . . . .

Then

P(S1 −m = k) = P(T = k).

This is a special case of what we have learnt of the independent properties of the inter-arrival

times Ti. Then the averaged arrival time for the k-th event is E[T1 + · · ·+ Tk] = k
p .

Elaborating further from this we can even consider a queuing system with maximal size of

customers X = {0, 1, . . . , N}. Let xn denote the number of customers at time n. Customers

arrive independently and with identically distributed Bernoulli distribution and leaves indepen-

dently with identical Bernoulli distributions, independent of each other. We assume that at any

time one customer arrives with rate p ∈ (0, 1) and one customer leaves at rate q ∈ (0, 1). A

model for this is as follows: for k 6= 0, N , we count whether a customer arrived and whether a

customer departed:

P(xn+1 = j|xn = k) =


p(1− q), if j = k + 1

(1− p)(1− q) + pq, if j = k

(1− p)q, if j = k − 1

At position 0, which means there is no customer at time n, then

P(xn+1 = 1|xn = 0) = p, P(xn+1 = 0|xn = 0) = 1− p

At position N , it means the capacity is full, no new customer can arrive,

P(xn+1 = N − 1|xn = N) = q, P(xn+1 = N |xn = N) = 1− q.

Write for simplicity a = p(1− q), b = (1− p)(1− q) + pq, and c = (q(1− p). Then, we can write

down this graphically as a stochastic matrix:

1− p p 0 0 0 . . . 0 0 0

b a c 0 0 . . . 0 0 0

0 b a c 0 . . . 0 0 0

. . .

. . .

. . .

0 0 0 0 0 . . . b a c

0 0 0 0 0 . . . 0 q 1− q


.

=
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7.4 Recurrence Criterion

Definition 7.4.1 Let ηj =
∑∞

n=1 1{xn=j}, this is the occupation time of state j, i.e. the number

of times the chain visits j.

Theorem 7.4.2 (Recurrent-criterion) A state j is transient if and only if
∑∞

n=1 P
n
jj < ∞.

Equivalently, a state j is recurrent if and only if
∑∞

n=1 P
n
jj =∞.

Proof. For ηj =
∑∞

n=1 1{xn=j}, we have Ej [ηj ] =
∑∞

n=1 P
n
jj . Then, with Lemma 7.3.4, we obtain∑

n=1

Pnjj = Ej [ηj ] =

∞∑
n=1

Pj(ηj ≥ n) =

∞∑
n=1

Pj(Tnj <∞) =

∞∑
n=1

(Pj(Tj <∞))n.

In conclusion, the geometric series is convergent if and only if Pj(Tj < ∞) < 1, i.e. if and

only if j is transient. Hence j is transient if and only if
∑∞

n=1 P
n
jj < ∞, while j is recurrent iff∑∞

n=1 P
n
jj =∞.

Example 7.4.1 (Simple Random Walk on Z )

Let Sn be the simple random walk with the transition probability P(xn = j|xn−1 = i) = 1
2 if

j = i + 1 or j = j − 1. Let ξi be i.i.d. such that P(ξ = ±1) = 1/2, and let i a given state. Let

Sn = i+
∑n

i=1 ξ. Then in this case Ti = inf{n ≥ 0, Sn = i} and Pi(A) = P(A|x0 = i). To return

to i the walk must go up the same number fo steps as it goes down. Hence,

∞∑
n=1

Pnii =
∞∑
n=1

P 2n
ii =

∞∑
n=1

.

(
2n

n

)(
1

2

)2n

Owing to the Stirling formula: limn→∞
n!

(n
e

)n
√

2πn
= 1, we have

∞∑
n=1

Pi(Ti = n) ∼ 1√
π

∞∑
n=1

1√
n

=∞,

By the recurrence criterion, every state i is recurrent, leading to the conclusion that the chain

is recurrent.

Corollary 7.4.3 Suppose j ∈ [i], then j and i are either both recurrent or transient. So a state

being transient or recurrent is a class property.

Proof. Assume i is recurrent, which by Corollary 7.4.2 meant that
∑∞

k=1 P
k
ii =∞. Since i and j

are accessible from each other, we may choose m1,m2 so that Pm1
ji > 0 and Pm2

ij > 0. Note that

∞∑
k=m1+m2+1

P kjj ≥
∞∑
n=1

Pm1
ji P

n
iiP

m2
ij = Pm1

ji P
m2
ij

∞∑
n=1

Pnii =∞.

Using the recurrence criterion again, Corollary 7.4.2, we see that i is recurrent implies that also

j is recurrent, and vice versa.
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Lemma 7.4.4 Let k ∈ X .

Then, either
∑∞

n=1 P
n
ij =∞ for any i, j ∈ [k] or

∑∞
n=1 P

n
ij <∞ for any i, j ∈ [k]. In particular if

[k] has a finite number of elements and is a minimal class, then
∑∞

n=1 P
n
ij =∞ for any i, j ∈ X

and every element of [k] is recurrent.

Proof. Suppose
∑∞

n=1 P
n
ij =∞ and i, j ∈ [k]. If i′, j′ ∈ [k], then there exist m1,m2 with Pm1

i′i > 0

and Pm2
jj′ > 0. Then

∞∑
n=1

Pni′j′ ≥
∞∑
n=1

PnijP
m1
i′i P

m2
jj′ =∞.

On the other hand, if |[k]| <∞ and
∑∞

n=1 P
n
ij <∞, then

∞∑
n=1

∑
j∈[k]

Pnij =

∞∑
n=1

1 =∞,

leading to a contradiction.

Theorem 7.4.5 (Dichotomy statement) The following dichotomy hold

1. j is recurrent iff Pj(xn = j, infinitely often ) = 1.

2. j is transient iff Pj(xn = j, infinitely often ) = 0.

Proof. This is a matter of expressing xn = j for an infinitely number of n’s with ηj .

{xn = j, i.o.} = {ηj =∞}.

We begin with the increasing sequence of events {ηj > m} = {Tm+1
j <∞},

lim
m→∞

Pj
(
ηj ≤ m

)
= 1− lim

m→∞
Pj
(
Tm+1
j <∞

)
= 1− lim

m→∞
Pj
(
Tj <∞

)m+1
.

Hence j is recurrent means precisely Pj
(
ηj < ∞

)
= 0 in the last step. We have used Lemma

7.3.4. Likewise j is recurrent if and only if Pj
(
ηj <∞

)
= 1.

Lemma 7.4.6 Suppose X is finite. There always exist a recurrent state. Moreover, a state is

recurrent if and only if it is in a closed/minimal class.

Proof. By Lemma 7.4.4, elements of a closed communication class from a finite state space are

always recurrent. A minimal class always exists. Suppose [i] is not minimal, ∃j ∈ [i], k /∈ [i]

such that Pmjk > 0 fro some m. the path from j to k cannot return to [i] whence Pj(Tj <∞) <

1− Pjk < 1 concluding that j and any other element of [j] is transient.
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Proposition 7.4.7 Suppose that i, j are two states such that j is accessible from i, but i not

accessible from j. Then i is transient. In particular, if [i] is not closed/minimal, it contains

only transient states.

Proof. Let m be the smallest number such that Pmij > 0. By the Chapman-Kolmogorov equation,

there exist paths from i to j of length m. Such a path from i to j (it is of shortest length) does not

return to i before time m. Since i is not accessible from j, such a path cannot return to i either

after time m. If x is the chain starting from i, {xm = j} = {xm = j, xm−1 6∈ {i, j}, . . . , x1 66∈
{i, j}) and

Pi(Ti =∞) ≥ Pi(xm = j, xm−1 6= j, . . . , x1 6= j) ≥ Pmij > 0,

so j is transient.

Definition 7.4.8 A recurrent state i is positive recurrent, if EiTi = E(Ti|x0 = i) <∞.

The standard argument for the existence of a recurrent state in a finite state space (or in a

finite minimal class) is where does it go otherwise? The rigorous proof goes like the following.

Let [i] be a minimal class. If i is transient, every state in [i] is transient by Corollary 7.4.3, and

Pi(xn = i, finitely often ) = 1. Then there exists M such that

AM = {ω : xn(ω) = i, at most M times }, Pi(AM ) >
1

2
.

If ω ∈ AM , the chain progresses to the next state j in [i] and never returns. The same argument

applies to j for the set of ω ∈ AM . Then in finite time, with positive probability the chain never

returns to any element of [i], but this contradicts that [i] is closed (minimal).

Example 7.4.2 Let x0, ξ0, ξ1, ξ2, . . . be independent r.v.’s with ξn taking values in {1, 2, 3, . . . },
and define xn+1 = xn + ξn on X = Z. Then xn moves to the rights on Z, it cannot give charge

at 0 since it moves away at one step. Similarly it cannot charge any state i ∈ Z. Note that (xn)

is a transient walk.

Example 7.4.3 (Simple Random Walk on Z) Consider for example the simple random walk on

Z. This process is constructed by choosing a sequence {ξn} of i.i.d. random variables taking the

values {±1} with equal probabilities. One then writes x0 = 0 and xn+1 = xn+ξn. A probability

measure π on Z is given by a sequence of positive numbers πn such that
∑∞

n=−∞ πn = 1. The

invariance condition for π shows that one should have

πn =
πn+1 + πn−1

2
, (7.7)

for every n ∈ Z. A moment of reflection shows that the only positive solution to (7.7) with

the convention π0 = 1 is given by the constant solution πn = 1 for every n (exercise: prove it).

In fact, this is the only solution. Since there are infinitely many values of n, this can not be

normalised as to give a probability measure.
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Intuitively, this phenomenon can be understood by the fact that the random walk tends to make

larger and larger excursions away from the origin.

Lemma 7.4.9 Recall ηj =
∑∞

n=1 1xn=j is the occupation time of the site j. Then,

∞∑
n=1

Pnij =
Pi(Tj <∞)

1− Pj(Tj <∞)
.

Proof.

∞∑
n=1

Pnij = Ei(ηj) =
∞∑
k=1

Pi(ηj ≥ k) =
∞∑
k=1

Pi(T kj <∞)

=
∞∑
k=1

Pi(Tj <∞)Pj(T k−1
j <∞)

=
∞∑
k=1

Pi(Tj <∞)(Pj(Tj <∞))k−1

=
Pi(Tj <∞)

1− Pj(Tj <∞)
.

In line 2 and line 3 we have applied Lemma 7.3.4. If Pj(Tj <∞) = 1, then
∑∞

n=1 P
n
ij =∞.

Theorem 7.4.10 If a state j is transient, then

∞∑
n=1

Pnij <∞ and lim
n→∞

Pnij = 0, ∀i ∈ X

Proof. For any i ∈ X , by Lemma 7.4.9

∞∑
n=1

Pnij =
Pi(Tj <∞)

1− Pj(Tj <∞)
.

Since Pj(Tj <∞) < 1 because j is transient, then
∑∞

n=1 P
n
ij <∞. Hence limn→∞ P

n
ij = 0.

Remark 7.4.11 We can give a more elementary proof the following fact, which might be more

illuminating: any invariant probability measure assigns zero probability to a transient state.

Proof. Suppose π is an invariant probability measure. Suppose that i0 is transient and with

π(i0) > 0. Owning to
∑∞

k=1 π(k) = 1, there exists N0 such that

∞∑
k=N0

π(k) <
1

2
π(i0).
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Since limn→∞ P
n
ji0

= 0, ∀j (by Theorem 7.4.10), there exists Ñ such that for n > Ñ , Pnji0 <
1
2π(i0) for any j ≤ N0. But by invariance π(i0) = πPn(i0), so if we take n > Ñ ,

π(i0) =

N0−1∑
j=1

π(j)Pnji0 +
∞∑

j≥N0

π(j)Pnji0

≤
N0−1∑
j=1

π(j) +
1

2
π(i0)

< π(i0).

This is a contradiction. So π is not an invariant probability measure. �

Note. If |X | <∞, π(i0) =
∑|X |

j=1 π(j)Pnji0 ≤ maxj∈X P
n
ji0
→ 0.

Theorem 7.4.12 If π is an invariant probability measure and if π(j) > 0 then j is recurrent.

Proof. We have π = πPn for any n ≥ 1. Hence for any j ∈ X we have

π(j) =
∑
l∈X

π(l)Pnlj . (7.8)

Summing the RHS of (7.8) over n, and using Lemma 7.4.9,

∞∑
n=1

∑
l∈X

π(l)Pnlj =
∑
l∈X

π(l)

∞∑
n=1

Pnlj =
∑
l∈X

π(l)
Pl(Tj <∞)

Pj(Tj =∞)
=

Pπ(Tj <∞)

Pj(Tj =∞)
.

If π(j) > 0, then
∞∑
n=1

π(j) =∞⇐⇒ Pj(Tj =∞) = 0,

hence j is recurrent.

Corollary 7.4.13 A transient Markov chain has no invariant probability measure.

Example 7.4.4 Suppose Pij = γi for j = i + 1, . . . , i + n, and
∑n

i=1 γi = 1, over state space

X = {1, 2, 3, . . . }. Then the associated Markov chain has no invariant probability measure.

Example 7.4.5 We can make even simpler examples. Let x0 = 0, xn+1 = xn + ξn+1, where ξn
are uniform distributed random variables with values in {1, 2, 3, 4, . . . }. Then xn moves to the

right on the integer lattice, and cannot have any invariant measure (It cannot give charge at 0,

for it moves away in one step. Similarly it cannot charge any state.
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Example 7.4.6 Let us consider

P =

1
2 0 1

2
1
2 0 1

2

0 0 1


1 3

2

Then states {1} and {2} are transient states, while state {3} is a recurrent state. An invariant

measure µ on X = {1, 2, 3} is always finite. We require µ(1) = µ(2) = 0, and we can take

µ = (0, 0, 1) to have total mass 1. Then µ is an invariant (probability) measure for P .

7.5 Irreducibility and reduced Markov Chains

Let us begin with an example.

Example 7.5.1 (Restricted Chains)

Let us consider

P =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 1

3
2
3

0 0 0 1
2

1
2

,
then [4] = {4, 5} is a closed communication class. If the chain starts from {4, 5}, it stays there.

Hence the chain restricts to a chain on {4, 5} with

P̃ =

(
1
3

2
3

1
2

1
2

)
.

Example 7.5.2 Let us consider

P =

1
2

1
2 0

1
2

1
2 0

0 0 1

,
then the communication classes are {1, 2} and {3} respectively. We note that (1/2, 1/2) is an

invariant measure for

(
1
2

1
2

1
2

1
2

)
. Hence

π1 = (
1

2
,
1

2
, 0), π2 = (0, 0, 1),

are invariant measures for the Markov chain associated to P . Then, with a ∈ [0, 1], we have a

family aπ1 + (1− a)π2 of invariant measures for P .

Definition 7.5.1
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• A recurrent state i is positive recurrent, if EiTi = E(Ti|x0 = i) <∞.

i.e. The return time to i has first moment.

• A recurrent state with EiTi =∞ is called null-recurrent.

Positive recurrence and null recurrence are class properties.

Example 7.5.3 Let xn = xn−1 + Yn where Yi are i.i.d.’s with values in {1,−1}. Let p ∈ (0, 1)

so P(Y = 1) = p and

P (x1 = i+ 1|x0 = i) = p, P (x1 = i− 1|x0 = i) = 1− p.

If p = 1
2 , the chain is recurrent, c.f. Example 7.4.1, not positive recurrent. If p 6= 1

2 , the chain

is transient.

To check whether a state i is recurrent, by Corollary 7.4.2 we only need to verify that∑∞
n=1 P

n
i,i =∞. But

∞∑
n=1

Pnii =
∞∑
k=1

P 2k
ii =

∞∑
k=1

(
2k

k

)
pk(1− p)k.

If 4p(1 − p) < 1 we can apply ratio test to see this is convergent. If 4p(1 − p) = 1, this is so

precisely when p = 1
2 the is infinite , this can be proved with the help of sterling’s formula:

k! ∼
√

2πk(k/e)k, then

(
2k

k

)
pk(1 − p)k ∼ 1√

k
(4pq)k = 1√

k
, thus every state is recurrent for

p = 1
2 .

Since it is doubly stochastic, µ(i) = 1 defines an invariant measure. The uniform measure on

Z is an invariant measure, not finite. Since recurrent irreducible chain has at most one invariant

measure, Theorem 7.6.4 below, it does not have an invariant probability measure.

If p 6= 1
2 , there exists another invariant measure: ν(i) = ( p

1−p)i. One can verify that it

satisfies the equation:
∑

j Pijµ(j) = µ(i), which means µ(i− 1)p+ µ(i+ 1)(1− p) = µ(i).

Example 7.5.4 The nearest neighbour random walk on Zd, which has probability 1
2d to jump

to one of its 2d nearest neighbour, is transient for every d 6= 1, 2. It is null recurrent for d = 1, 2.

7.6 Construction of invariant measure from recurrent state

Let (xn) be a time homogeneous Markov chain with transition probabilities P . Let i be a

recurrent state. For any j ∈ X , define

µ(j) = Ei

(
Ti−1∑
n=0

1{xn=j}

)
. (7.9)
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This is the expected number of visits to j during an excursion from i. Note that µ(i) = 1. Since

Pi(Ti <∞) = 1,

µ(j) = Ei

( ∞∑
n=0

1{n<Ti}1{xn=j}

)
=
∞∑
n=0

Pi(xn = j, Ti > n). (7.10)

Theorem 7.6.1 (Existence of invariant measure) Let i be a recurrent state. Then µ given

below, defines an invariant measure.

µ(j) =
∞∑
n=0

Pi(xn = j, Ti > n)

Proof. We need to show µP = µ.

Case j 6= i. First we consider j 6= i, in this case µ(j) =
∑∞

n=1 Pi(xn = j, Ti > n). Then,

µ(j) =
∑
k∈X

∞∑
n=1

Pi(Ti > n, xn = j, xn−1 = k, Ti > n− 1)

=
∑
k∈X

∞∑
n=1

P(Ti > n, xn = j|xn−1 = k, Ti > n− 1)Pi(xn−1 = k, Ti > n− 1)

=
∑
k∈X

∞∑
n=1

P(xn = j|xn−1 = k, Ti > n− 1)Pi(xn−1 = k, Ti > n− 1)

=
∑
k∈X

Pkjµ(k) = (µP )(j).

Where in the last line we used that {Ti > n− 1} ∈ Fn−1 and the definition of µ(k).

Case j = i. It now remains to show that (µP )(i) = µ(i), where

(µP )(i) =
∑
k∈X

∞∑
n=0

Pi(Ti > n, xn = k)Pki.

On the other hand, we have

Pi(Ti = n+ 1) =
∑
k 6=i

Pi(Ti > n, xn+1 = i, xn = k)

=
∑
k 6=i

Pi(xn+1 = i|xn = k, Ti > n)Pi(Ti > n, xn = k)

=
∑
k 6=i

PkiPi(Ti > n, xn = k) =
∑
k∈X

Pi(Ti > n, xn = k)Pki.

Hence

(µP )(i) =

∞∑
n=0

Pi(Ti = n+ 1) = Pi(Ti <∞) = 1 = µ(i).

Puttign the two cases together, we showed µP = µ.
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Corollary 7.6.2 The invariant measure constructed in Theorem 7.6.1 has finite mass if the

state i is positive recurrent.

Proof. By (7.10), we note that

∑
j∈X

µ(j) =

∞∑
n=0

Pi(Ti > n) = Ei[Ti] (7.11)

is finite, if i is positive recurrent.

Lemma 7.6.3 Let i be a recurrent state and µ the invariant measure defined at (7.9) Let ν be

any other invariant measure, then

ν(k) ≥ ν(i)µi(k), ∀ k ∈ X . (7.12)

Proof. Note that µ(i) = 1 and equality holds for k = i. Let Ln be the last visit to i before n,

then we can decompose

Ω =
n−1⋃
m=0

{Ln = m} ∪A0, A0 = {no visits before n}.

Then

Pj(xn = k) ≥
n−1∑
m=0

Pj(xn = k, Ln = m),

so that, for k 6= i,

Pnjk ≥
n−1∑
m=0

Pj(xn = k, xn−1 6= 1, . . . , xm+1 6= i, xm = i)

=

n−1∑
m=0

P(xn = k, xn−1 6= 1, . . . , xm+1 6= i|xm = i)Pmji

=

n−1∑
m=0

Pi(xn−m = k, Ti > n−m)Pmji .

Hence,

ν(k) = (νPn)(k) ≥
∑
j∈X

ν(j)

n−1∑
m=0

Pi(xn−m = k, Ti > n−m)Pmji

=
n−1∑
m=0

Pi(xn−m = k, Ti > n−m)
∑
j∈X

ν(j)Pmji
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=
n−1∑
m=0

Pi(xn−m = k, Ti > n−m)ν(i), ∀n.

Where in the last line we used invariance of ν. Noting

µ(k) =
∞∑
l=1

Pi(xl = k, Ti > l),
n−1∑
m=0

Pi(xl = k, Ti > l) =
n∑
l=1

Pi(xn−m = k, Ti > n−m),

we conclude

ν(k) ≥ µ(k)ν(i) =
µ(k)

µ(i)
ν(i)

and the proof.

Theorem 7.6.4 (Uniquness of invariant measure) If the chain is irreducible and recur-

rent, then the invariant measure is unique up to a multiplication constant.

Proof. Let ν be any invariant measure and let i be any recurrent state. Let us consider µ defined

as in (7.9). Since µ(i) = 1,

0 = ν(i)− ν(i)µ(i) = νPn(i)− ν(i) µPn(i) =
∑
k∈X

≥0︷ ︸︸ ︷
(ν(k)− ν(i)µ(k))Pnki.

Lemma 7.6.3 implies that

(ν(k)− ν(i)µ(k))Pnki, ∀ n, k.

For any k, i, there exists n such that Pnki 6= 0, then we must have

ν(k) = ν(i)µ(k), ∀ k,

concluding the proof.

Theorem 7.6.5 (Invariant probability measure and positive recurrent) Let (xn) be an

irreducible THMC.

1. If the tHMC has an invariant probability measure π, then EiTi <∞ for all i (i.e. all states

are positive recurrent) and

π(i) =
1

EiTi
(> 0).

2. If there exists a positive recurrent state, the THMC has a unique invariant probability

measure and every state is positive recurrent.
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Proof. (1) Suppose π is an invariant probability measure, then there exists i with π(i) > 0,

this site i is recurrent by Theorem 7.4.12. By irreducibility, every site is recurrent. For a

distinguished i, we define a measure µ as below

µ(j) :=
∞∑
n=0

Pi(xn = j, Ti > n)

This is the construction in Theorem 7.6.1, by which we know that µ is an invariant measure.

Then summing over j, we have

∑
j∈X

µ(j) =

∞∑
j=1

∞∑
n=0

P(xn = j, Ti > n) =
∞∑
n=0

Pi(Ti > n) = EiTi.

On the other hand, the invariant measure µ is finite by uniqueness (due to Theorem 7.6.4),

concluding EiTi <∞. Since µ(i) = 1,

π(i) =
µ(i)

EiTi
=

1

EiTi
.

This procedure can be applied to any i ∈ X , concluding that every state i is positive recurrent.

This procedure can be applied to every state concluding the first part of the theorem.

(2) We assume that i is a positive recurrent state, then µ constructed in Theorem 7.6.1 is

a finite measure (see also Corollary 7.6.2). By the previous argument, every state is positive

recurrent.

7.7 The long run probabilities

As usual, let xn be a THMC with transition probabilities, usually denoted by P , on a countable

state space X . On a finite state space, we can compute Pn, in principle. In practice this is

horrendous when the size of the state is not so small. We have seen that if limn→∞ P
n
ij exists

for any j, then ν(j) = limn→∞ P
n
ij defines an invariant measure.

Exercise 7.7.1 If Pni,j → π(j)as n → ∞ for every i and i (the rate the Markov chain goes to

state i from any other state is π(j)), show that π is an invariant probability measure.

Does the converse holds? We are now familiar with invariant measures, could we use this to our

advantages? The answer is yes, if the chain satisfies aset of suitable conditions.
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Firstly, if it has two distinct invariant probability measures, limn→∞ P
n
ij could not agree with

both sets of values. We will need to restrict to irreducible Markov chains. For the existence of

a probability measure π, positive recurrence is called for.

In Theorem 7.4.10, we showed that if j is a transient state, then limn→∞ P
n
ij = 0 for any i.

We also showed that, if π is an invariant probability measure, then π(j) = 0 for a transient state

j, and in this case limn→∞ P
n
ij = π(j) for any i.

How about the recurrent states?

Example 7.7.1 Let P =

(
0 1

1 0

)
. Since P 2n = Id and P 2n+1 = P , the two states are both

recurrent. But, P 2n
11 = 1, P 2n+1

11 = 0, we have an alternating series, limn→∞ P
n
11 does not exist.

The chain with transition matrix P =

(
0 1

1 0

)
of above, is an example of a periodic chain.

To obtain a reasonable limit theorem, we exclude also periodic chains.

The main theorem is then Theorem 7.7.6 which states that under the conditions we stated,

Pnij → π(j) for every j, i. In fact we will show the probability measure µPn, where µ is the

initial distribution, converges to π in total variation.

7.7.1 Return Times and Aperiodicity

For every state i, we define the set R(i) of return times to i to be:

R(i) = {n > 0 |Pnii > 0} .

Note that n ∈ R(i) if and only if there exists a path i → i (of positive probability) of length

n. If n,m ∈ R(i), then n+m ∈ R(i) which follows from the Chapmann-Kolmogorov equations:

Pn+m
ii =

∑
k∈X P

n
ikP

m
ki ≥ PniiPmi > 0. If R(i) 6= φ, then it is of infinite size, i.e. |R(i)| =∞.

Definition 7.7.1 The period of the state i is then defined by

d(i) =

{
gcdR(i), if R(i) 6= φ;

+∞, if R(i) = φ.

( R(i) = φ can only happen if and only if [i] contains a single state from which the chain leaves

straightaway and never returns, i.e. [i] = {i} and Pii = 0.)

Note. The period d(i) may not belong to R(i). It does not even necessarily mean that the

chain will necessarily be able to return at time d(i). See example of incidence graph below
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4 3 4

1 2 5

6

We have R(i) = {4n, 6m, 4n + 6m, . . . , :

n,m ≥ 1} and d(i) = 2. However the chain

does not return at time 2 = d(i).

Definition 7.7.2 If d(i) = 1, we say that state i is aperiodic.

If d(i) > 1, we say that state i is periodic.

Note. If Pii > 0, then 1 ∈ R(i), so that i is aperiodic.

Proposition 7.7.3 If i and j are any two states with i ∼ j, then d(i) = d(j) <∞.

Proof. Since i and j communicate with each other, there exist n and m such that Pnij > 0 and

Pmji > 0. This implies that n + m ∈ R(i) ∩ R(j), so that both d(i) and d(j) divide n + m, and

Pn+m
ii ≥ PnijPmji > 0. If k ∈ R(i) then k + n+m ∈ R(j), as

Pn+m+k
jj ≥ Pmji P kiiPnij > 0.

Then d(j) divides n+m and k + n+m, which implies that d(j)|k, for any k ∈ R(i). Hence

d(j) ≤ d(i).

The same is true with i and j exchanged, i.e. d(i) ≤ d(j), so that one must have d(i) = d(j).

Definition 7.7.4 A THMC (or stochastic matrix P ) is aperiodic if d(i) = 1 for all i ∈ X .

A THMC (or stochastic matrix P ) is periodic of period d > 1 if for any i ∈ X , d(i) = d.

As a consequence of Proposition 7.7.3, any two states in the same communication class have

the same period and we can conclude the following.

Corollary 7.7.5 An irreducible chain is either periodic or aperiodic.

Example 7.7.2 Consider a Markov chain on the the states marked below

1

2

3

4

5

R1

R2

R3

R4



7.7. THE LONG RUN PROBABILITIES 88

The chain (with 1 = R1, 6 = R2, 7 = R3, 8 = R4) is aperiodic with decomposition {3n, 5n}.

Example 7.7.3 The chain with incidence graph below is periodic with period d = 3.

1 2

3

45

6 R1

R2

R3

7.7.2 Ergodic Theorem

Theorem 7.7.6 Assume P be irreducible, aperiodic and positive recurrent. Let π denote its

unique invariant probability measure. Then

lim
n→∞

∑
j∈X

∣∣Pnij − π(j)
∣∣ = 0, ∀i ∈ X .

Proof. Let (xn, n ≥ 0) and (x′n, n ≥ 0) be independent time homogeneous Markov processes

on X = N, with transition probabilities P and with initial distribution x0 ∼ µ and x′0 ∼ ν

respectively.

Claim 1. The stochastic process zn := (xn, x
′
n) is a THMC on X 2 with transition probabil-

ities Q and initial distribution µ⊗ ν, where

Q(i,i′),(j,j′) = PijPi′j′ , ∀i, i′, j, j′ ∈ X .

Let

T = inf
n≥0
{xn = x′n}

be the coalescing time of the stochastic processes xn and x′n. This is the first time that zn
reaches the diagonal set ∆ = {(i, i) : i ∈ X}.

Claim 2. We have P(T <∞) = 1.

Claim 3.
∑

j∈X |P(xn = j)− P(x′n = j)| ≤ 2P(T > n).

By Claim 2, P(T > n)→ 0 as n→∞. Pick initial condition δi to finish the proof:

x0 = i, P(xn = j) = Pnij ,

x′0 = π, P(x′n = j) = π(j).
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We now go ahead to prove the claims employed in Theorem 7.7.6. Claim 3 is proved in

Lemma 7.7.9, Claim 1 is Lemma 7.7.10 and Claim 2 is deduced through Lemma 7.7.11-7.7.21 in

Lemma 7.7.12.

Definition 7.7.7 By a coupling of two random variables X and Y with state space X we mean

a random variable Z = (X ′, Y ′) with state space X 2 such that

L(X) = L(X ′) and L(Y ) = L(Y ′).

( So L(Z) is a coupling of L(X) and L(Y ) )

Of course we can speak of a coupling of two stochastic processes.

Set-up for next lemmas. Let (xn, n ≥ 0) and (x′n, n ≥ 0) be independent time homoge-

neous Markov processes on X = N, with transition probabilities P and with respectively initial

distributions µ and ν. The process zn = (xn, x
′
n) is known as “Doeblin coupling”.

Lemma 7.7.8 ( Coupling lemma)

Let zn = (xn, x
′
n) be the Doeblin coupling. Let T = infn≥0{xn = x′n} be the coalescing time of

the Markov processes xn and x′n. Define

yn =

{
xn, n < T,

x′n, n ≥ T.

Then (yn) is a Markov process with initial distributions µ = L(x0) and transition probabilities P .

Proof. Let Fn = σ(xk, k ≤ n) ∨ σ(x′k, k ≤ n). Let f ∈ Bb(X ), then we have

E[f(yn+1)|Fn] = E[f(yn+1)1{T≤n}|Fn] + E[f(yn+1)1{T>n}|Fn]

= 1{T≤n}E[f(x′n+1)|Fn] + E[f(xn+1)|Fn]1{T>n}

= 1{T≤n}Pf(x′n) + 1{T>n}Pf(xn)

= 1{T≤n}Pf(yn) + 1{T>n}Pf(yn)

= Pf(yn).

In the second line we used the fact that T > n implies T ≥ n + 1 (and on T = n + 1 xn+1 =

x′n+1 = yn+1). We also used a consequence of Exercise 7.7.2 (see below).

Exercise 7.7.2 Let {Gn} and {G′n} be independent σ-algebras. Suppose that if (xn) is a THMC

w.r.t. Gn, i.e.

E[f(xn+1)|Gn] = Pf(xn), a.e. ∀f ∈ Bb(X ), ∀n ≥ 0.

Then (xn) is a THMC w.r.t. Gn ∨ G′n, i.e.

E[f(xn+1)|Gn ∨ G′n] = Pf(xn), a.e.



7.7. THE LONG RUN PROBABILITIES 90

Lemma 7.7.9 ( Coupling inequality)

Let zn = (xn, x
′
n) be the Doeblin coupling. The following inequality (Claim 3) holds∑

j∈X

∣∣P(xn = j)− P(x′n = j)
∣∣ ≤ 2P(T > n).

Proof. Let j ∈ X ,∣∣P(xn = j)− P(x′n = j)
∣∣ =

∣∣P(yn = j)− P(x′n = j)
∣∣ (by Lemma 7.7.8)

=
∣∣P(yn = j)− P(x′n = j, n < T )− P(yn = j, n ≥ T )

∣∣
=
∣∣P(yn = j, n < T )− P(x′n = j, n < T )

∣∣.
Hence ∑

j∈X

∣∣P(xn = j)− P(x′n = j)
∣∣ ≤∑

j∈X
P(yn = j, n < T ) +

∑
j∈X

P(x′n = j, n < T )

≤ 2P(T > n).

We proved the required inequality.

Lemma 7.7.10 ( The Doeblin coupling)

The Doeblin coupling zn = (xn, x
′
n) is a THMC on X 2 with transition probabilities Q and initial

distribution µ⊗ ν, where

Q(i,i′),(j,j′) = PijPi′j′ , ∀i, i′, j, j′ ∈ X .

Proof. By the independence of x0 and x′0, L(x0, x
′
0) = µ⊗ ν. Similarly, for any j, j′ ∈ X and n,

P(zn+1 = (j, j′)|Fn) = P(xn+1 = j, x′n+1 = j′|Fn) = P(xn+1 = j|xn) · P(x′n+1 = j′|x′n)

= Pxn,jPx′n,j′ = Qzn,(j,j′)

Recall that Pxn,j is P·,j ≡ P(·, {j}) composed with xn, and the others are defined similarly. This

proves that P(zn+1 = (j, j′)|Fn) = P(zn+1 = (j, j′)|xn) and that (zn) is a THMC with transition

probability Q.

Exercise 7.7.3 Check that

P(xn+1 = j, x′n+1 = j′|Fn) = P(xn+1 = j|xn) · P(x′n+1 = j′|x′n).

Lemma 7.7.11 If P is irreducible, aperiodic, and positive recurrent, then Q is irreducible and

positive recurrent.
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Proof. Firstly, π ⊗ π is an invariant probability measure for Q. If Q is irreducible, then Q is

positive recurrent.

Fact (please verify it):

Qn(i,i′),(j,j′) = PnijP
n
i′j′ , ∀n ≥ 1.

We know there exists n, n′ such that Pnij > 0 and Pn
′

i′j′ > 0. The question is whether we can find

a number n such that both simultaneously positive.

Owning to Lemma 7.7.21 (see below), for any i ∈ X there exists an N such that Pnii > 0 for

any n > N . By the irreducibility of P , for any i, j, there exists m with Pmij > 0. Then for any

n > N ,

Pn+m
ij ≥ PniiPmij > 0, ∀n > N.

Hence for any i, j, Pnij > 0 for every n sufficiently large. By symmetry, Pnji > 0 for all n

sufficiently large.

To summarise, for any two pairs (i, j), (i′, j′), we can find a common n with

Pnij > 0, Pni′j′ > 0⇒ Qn(i,i′),(j,j′) > 0,

proving that Q is irreducible.

Lemma 7.7.12 ( Successful coupling)

Let P be irreducible, aperiodic, and positive recurrent. Then,

P(T <∞) = 1.

Proof. Recall coalescing time T = infn≥0{xn = x′n}. Let

T(i,i′) = inf{n ≥ 1 : zn = (xn, x
′
n) = (i, i′)},

then T ≤ T(i,i′). Since Q is irreducible and recurrent, by Lemma 7.7.11,

Pz(T(i,i′) <∞) = 1, ∀z ∈ X 2.

Hence

P(T <∞) ≥ P(T(i,i′) <∞) = 1.

This shows that the Doeblin coupling is successful.

7.7.3 The total variation distance

Definition 7.7.13 The total variation distance between two probability measures µ and ν (in

any measurable space) is

‖µ− ν‖TV = 2 sup
A⊂X

|µ(A)− ν(A)| ,

where the supremum runs over all measurable subsets of X .
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Remark 7.7.14 This is equivalent to

‖µ− ν‖TV = sup
f∈Bb(X )

‖f‖∞=1

∣∣∣∫
X
f(x)µ(dx)−

∫
X
f(x) ν(dx)

∣∣∣ , (7.13)

where the maximum is run over bounded measurable functions.

It is clear that ‖µ− ν|TV = 0 if and only if µ = ν. Furthermore, the total variation distance

between any two probability measures is smaller or equal to two: ‖µ − ν‖TV ≤ 2. If µ and ν

are singular, there exists a measurable subset X0 such that µ(X0) = 1 and ν(X0) = 0. Then

‖µ− ν‖TV ≥ 2‖µ(X0)− ν(X0)‖ = 2 and so ‖µ− ν‖TV = 2. One sees that µ and ν are singular

if and only if their total variation distance is the maximum value 2, c.f. Lemma 8.6.7.

Lemma 7.7.15 If µ, ν are probability measures on a discrete space X , then

‖µ− ν‖TV =
∑
i∈X
|µ(i)− ν(i)| = ‖µ− ν‖1.

Also, ‖µ− ν‖TV = 2
∑
{i:µ(i)≥ν(i)}(µ(i)− ν(i)).

Proof. Let B = {i : µ(i) ≥ ν(i)}. Then∑
i∈X
|µ(i)− ν(i)| =

∑
{i∈B}

(µ(i)− ν(i)) +
∑
{i∈Bc}

(ν(i)− µ(i))

= µ(B)− ν(B) + ν(Bc)− µ(Bc) = 2(µ(B)− ν(B)) ≤ ‖µ− ν‖TV .

Since µ(B)− ν(B) = ν(Bc)− µ(Bc),∑
{i:µ(i)≥ν(i)}

(µ(i)− ν(i)) =
∑

{i:µ(i)<ν(i)}

(ν(i)− µ(i)) =
1

2

∑
i∈X
|µ(i)− ν(i)|.

For any A ⊂ X ,

|µ(A)− ν(A)| = |µ(A ∩B)− ν(A ∩B)− (ν(A ∩Bc)− µ(A ∩Bc))|
≤ max (|µ(A ∩B)− ν(A ∩B)|, |µ(A ∩Bc)− ν(A ∩Bc)|)
≤ max (|µ(B)− ν(B)|, |µ(Bc)− ν(Bc)|)

= |µ(B)− ν(B)| =
∑

{i:µ(i)≥ν(i)}

(µ(i)− ν(i)),

Hence, ‖µ− ν‖TV ≤
∑

i∈X |µ(i)− ν(i)|. This completes the proof.

Exercise 7.7.4 Let dµ = fdx and dν = gdx on Rd. Show that

‖µ− ν‖TV =

∫
Rd
|f(x)− g(x)| dx .
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Definition 7.7.16 We say that a sequence {µn} converges in total variation to a limit µ if

lim
n→∞

‖µn − µ‖TV = 0 .

Example 7.7.4 Let µn = δ 1
n

on R. Then µn → δ0 weakly, but not in the total variation norm.

In fact the distance ‖µn − δ0‖TV = 2.

Even though it may look at first sight as if convergence in total variation was equivalent to strong

convergence, by strong convergence we mean limn→∞ µn(A) = µ(A) for every measurable set A,

this is not true as can be seen in Example 7.7.5 below.

Example 7.7.5 Let Ω be the unit interval and define the probability measures

µn(dx) =
(
1 + sin(2πnx)

)
dx .

Then, µn converges to the Lebesgue measure weakly and strongly, but not in total variation.

(This resut is also called Riemann’s lemma and is well-known in Fourier analysis.)

Example 7.7.6 The sequence N (1/n, 1) of normal measures with mean 1/n and variance one

converges to N (0, 1) in total variation (and therefore also weakly and strongly).

Example 7.7.7 Let X = {1, 2} and let P =

(
1− α α

β 1− β

)
. Then π =

(
β

α+β
α

α+β

)
. Let

µ0 =
(

1 0
)

. Then µ0 − π = α
α+β

(
1 −1

)
and ‖µ0 − π‖TV = 2α

α+β . Now for α + β 6= 1, (what

happens if α+ β = 1?)

µ0P
n − π = (µ0 − π)Pn =

α

α+ β

(
1 −1

)(Pn11 Pn12

Pn21 Pn22

)
=

α

α+ β
(Pn11 − Pn21)

(
1 −1

)
Note Pn11 − Pn21 = (1− α− β)n. So if α+ β < 1,

‖µ0P
n − π‖ = (1− α− β)n‖µ0 − π‖TV → 0.

7.7.4 Convergence Theorem in Total Variation

In sight of the definition of the total variation distance between probability measure, we can see∑
j∈X
|Pnij − π(j)| = ‖Pn(i, ·)− π‖TV.

If x0 ∼ µ, recall that P(xn = j) = µPn(j) =
∑

i∈X µ(i)Pnij , and we can reformulate Theorem

7.7.6 as follows, proving it for X = N.
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Theorem 7.7.17 If xn is an irreducible, aperiodic and positive recurrent THMC with x0 ∼ µ,

then

‖µPn − π‖TV → 0, as n→∞. (7.14)

Proof. We have shown in Theorem 7.7.6 that

lim
n→∞

‖Pn(i, ·)− π‖TV = 0, ∀i ∈ X . (7.15)

This is (7.14) in the case µ = δi, the next lemma shows that (7.15) implies (7.14).

Lemma 7.7.18 Let µ be any distribution, then (7.15) implies

lim
n→∞

‖µPn − π‖TV = 0. (7.16)

Proof. Let us first note that

‖µPn − π‖TV =

∞∑
j=1

∣∣∣∣∣
∞∑
i=1

µ(i)Pnij − π(j)

∣∣∣∣∣ =

∞∑
j=1

∣∣∣∣∣
∞∑
i=1

µ(i)Pnij −
∞∑
i=1

µ(i)π(j)

∣∣∣∣∣.
Given any ε > 0, we can choose N such that

∑∞
i=N+1 µ(i) < ε

4 , so that

∞∑
i=N+1

µ(i)

∞∑
j=1

|Pnij − π(j)| < ε

2
. (7.17)

Since
∑∞

j=1 |Pnij − π(j)| ≤
∑∞

j=1 P
n
ij +

∑∞
j=1 π(j) = 2. On the other hand, we may choose M

such that for all i ≤ N ,
∑∞

j=1 |Pnij − π(j)| ≤ ε
4 for any n ≥M . Hence

∞∑
j=1

N∑
i=1

µ(i)|Pnij − π(j)| <
N∑
i=1

µ(i)
ε

4
≤ ε

4
. (7.18)

Then (7.17) and (7.18) combined give us (7.16).

7.7.5 Periodic Chains, Cycles

A set S ⊂ N is said to have the additive property if n,m ∈ S implies that n + m ∈ S. The

following result is well-known in number theory (the Chinese remainder theorem):

Lemma 7.7.19 (A number theory lemma) Let S ⊂ N with the additive property, and not

empty. Let d = gcd(S). There exists K > 0 such that kd ∈ S for every k ≥ K.
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Proof. By dividing everything by d, we can assume without loss that d = 1. Since gcdS = 1,

there exists a finite collection d1, . . . , dn in S such that gcd{d1, . . . , dn} = 1. The Euclidean

algorithm implies that there exist integers a1, . . . , an such that
∑n

i=1 aidi = 1. Set M =
∑n

i=1 di.

Then, for k = 1, . . . ,M , one has

NM + k =
n∑
i=1

(N + kai)di .

Since k ≤ M , we can choose N0 such that N0 + kai ≥ 0 ( N0 = M max{|a1|, . . . , |an|}). By

additive property of S, this implies that NM + k ∈ S for every k ∈ {0, . . . ,M} and every

N ≥ N0. Therefore, the claim holds with K = N0M .

An irreducible TH Markov chain decomposes into disjoint union of cycles. A characterisation

of periodic chains is the following.

Lemma 7.7.20 The period of an irreducible stochastic matrix P is the largest value d ≥ 1 such

that it is possible to write X as a disjoint union of non-empty sets A0t . . .tAd−1 in such a way

that if i ∈ An and Pij > 0, then j ∈ An+1. We have identified An+kd with An.

Proof. Assume that P has period d. We begin with the element 1 (the choice of the index 1 is

arbitrary), the cycle contains 1 is:

A0 = {j : P kd1j > 0 for some k ∈ N},

Similarly for n = 1, . . . , d− 1, we define An by

An = {j | ∃ m = 0 (P kd+n
1j > 0 for some k ∈ N} . (7.19)

Claim. {An} are disjoiunt and X = ∪d−1
k=1Ak.

Since P is assumed to be irreducible, for any j, there exists n such that Pn1j > 0, hence

the union of the An is all of X . Furthermore, they are disjoint. Otherwise, one could find

j such that it belongs to An1 ∩ An2 . So Pn1+k1d
1j > 0 and Pn2+k2d

1j > 0 with k1, k2 ∈ N,

n1, n2 ∈ {0, 1, . . . , d − 1}. Since P is irreducible, there exists furthermore q such that P qj1 > 0,

so that n1 + k1d+ q ∈ R(1) and n2 + k2d+ q ∈ R(1). Thus d can divide n1 − n2 which is only

possible when n1 = n2. The fact that these sets have the required property is then immediate.

If such a decomposition exists for p > 1, then if i ∈ An, a chain starts from i cannot return to

An in less than p-steps. Since the chain is irreducible, it must has positive probability to return

to it, so p is a divisor of d and the largest d with this decomposition is the period of the chain.

Note that for this d, P d must be reducible.

We finally come back to prove the lemma using a well known result in number theory.
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Lemma 7.7.21 Suppose i is aperiodic and recurrent, then ∃N such that Pnii > 0 for every

n > N .

Proof. Since i is recurrent we have
∑∞

n=1 P
n
ii = ∞ and R(i) 6= φ. . By the Chinese remainder

theorem, see Lemma 7.7.19 below, ∃N such that any n > N belongs to R(i).

2

1

3

4

Figure 7.1: Periodic.

The example given in (7.1.2) is aperiodic. However the ex-

ample shown in Figure 7.1 is periodic with period 3. In this par-

ticular case, one can take A0 = {2}, A1 = {1, 3}, and A2 = {4}.
Note that this choice is unique (up to permutations of course).

Note also that even though P is irreducible, P 3 is not. This is

a general fact for periodic processes. Stochastic matrices such

that the corresponding incidence graph is given by Figure 7.1

are of the form

P =


0 1 0 0

0 0 0 1

0 1 0 0

q 0 1− q 0


for some q ∈ (0, 1).

The period does not refer to the minimal time for the chain to return to a particular state,

it is the time for it to return to its own cycle.

Example 7.7.8 Simple Random Walk on Z. Recall Example 7.4.3. The chain is periodic of

period 2, with state space decomposed as

Z = {2n} ∪ {2n+ 1}.

If we let yn = x2n (where xk =
∑k

i=1 ξ, with ξ be i.i.d. such that P(ξ = ±1) = 1/2). Then yn is

a THMC on even integers {2n} with

P(yn = k|Fyn=1) = P(x2n = k|x0, . . . , x2n−2) = P(x2n = k|x2n−2) = P 2(yn−1, k).

Example 7.7.9 The chain with incidence graph below is periodic with period d = 3.

1 2

3

45

6 R1

R2

R3
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Where 3 = R1, 7 = R2, 8 = R3. We can decompose state space into

A0 = {1, 4, R2 = 7}, A1 = {2, 5, R3 = 8}, A2 = {3, 6}.

The process yn = x3n is a Markov chain on each Ai with restricted t.p. from P 3.

The THMC on each cycle is irreducible. Suppose it has an invariant measure when restricted

to A0, could we use it to construct an invariant measure for P?

7.7.6 Invariant measure for periodic chains

Let us recall the transformation T on measures, which in this setting is given by Tµ := µP .

Proposition 7.7.22 Suppose that Tnµ = µ for some fixed n. Let µ̂ = 1
n

∑n
k=1 T

kµ. Then µ̂ is

an invariant measure for T .

Proof. Let A be a Borel measurable set. Then

T µ̂(A) =
1

n

n∑
k=1

T k+1µ(A) =
1

n

n−1∑
k=1

T k+1µ(A) +
1

n
Tn+1µ(A) =

1

n

n∑
k=2

T kµ(A) +
1

n
Tµ(A) = µ̂(A).

Remark 7.7.23 If we have a periodic chain with period d, then X = A0 ∪ · · · ∪Ad−1. If there

exits an invariant measure µ for the chain on A0, then µ̂ = 1
d

∑d
k=1 µP

k is an invariant measure

for P .

Exercise 7.7.5 Let X = {1, . . . , N}. Let P be irreducible of period d. Show that, for n ≥ 1,

the period q of Pn is given by q = d/r, where r is the greatest common divider between d and n.

Define the partition {Bi} of {1, . . . , N} given by Bi =
⋃
n≥0Ai+nq (mod d), where {Ai} is the

partition associated to P by Lemma 7.7.20. Then the THMC with t.p. Pn always jumps from

Bi to Bi+1 in one step.

Examples: X = {1, . . . , 6} and Pi(i+1) = 1. Then the period of P is 6. Note that the chain (yn)

with t.p. P 3 has communication classes {1, 4}, {2, 5}, and {3, 6}. Now r = 3, q = 6/3 = 2,

B1 = {1, 3, 5} and B2 = {2, 4, 6}. Note that the chain yn always jumps from B1 to B2, and also

from B2 to B1.

Exercise 7.7.6 Let X = {1, . . . , N}. Consider an irreducible stochastic matrix P and an

arbitrary partition {Bj}q−1
j=0 of {1, . . . , N} such that if i ∈ Bn and j ∈ Bm withm 6= n+1 (mod q),

then Pij = 0. Show that q must be a divider of d and that the partition {Bj} is the one associated

by Lemma 7.7.20 to the matrix P d/q.
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7.8 Ergodic Theorem: The law of Large Numbers

Let us first recall Kolmogorov’s strong law of large numbers.

Theorem (Strong Law of Large Numbers). Let (ξn)n≥1 be a family of real-valued inde-

pendent and identically distributed random variables. Suppose E|ξi| <∞ and a = Eξi, then

1

n

n∑
k=1

ξk → a a.e.

Its simplest extension to Markov processes states:

Theorem 7.8.1 Let x be an irreducible positive recurrent THMC on X = N. Let π denote its

invariant probability measure. Then for any f : X → R integrable,

lim
n→∞

1

n

n∑
k=1

f(xk) =

∫
X
fdπ , a.e. . (7.20)

Remark 7.8.2 If f = 1i for some state i ∈ N, and µ = L(x0), then (7.20) becomes

1

n

n∑
k=1

1i(xk) −−−−−→
(n→∞)

π(i).

In the case the chain is aperiodic, we have already proven (Theorem 7.7.17) that Pnµ → π for

any probability measure µ, in particular limn→∞Eµ(1i(xn)) = limn→∞ Pµ(xn = i) = π(i) and

therefore by the dominated convergence theorem

lim
n→∞

Eµ

( 1

n

n∑
k=1

1i(xk)
)

= lim
n→∞

( 1

n

n∑
k=1

Eµ1i(xk)
)

= π(i) . (7.21)

Remark 7.8.3 It is often asked whether aperiodicity is needed in Theorem 7.8.1 is needed.

It is not needed. The proof does not use aperiodicity. In fact, assuming that Theorem 7.8.1

holds for aperiodic irreducible positive recurrent chains, we now deduce it for periodic chains.

Indeed, suppose it is periodic of period d, we may take n = md terms where d is the period (if

n = md + k, k < d one can take an an approximation). Then P d is aperiodic, irreducible and

positive recurrent on each cycle. In this n = md case,

1

n

n∑
k=1

f(xk) =
1

d

d−1∑
`=0

1

m

m∑
k=1

f(xkd+`).

Let y0
k = xkd . Then

1

m

m∑
k=1

f(xkd)→
∫
f(x)dµ0(x)
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where µ0(x) is the invariant measure on the cycle containing x. Now y`k = xkd+` is the chain

with initial condition x` on the `-th cycle,

1

m

md∑
k=1

f(xkd+`)→
∫
f(y)dµ`(x)

where µ` is the invariant measure of P d in the ` the cycle. In fact

(µ0P
`)P d = (µ0P

d)P ` = µ0P
`,

µ` = µ0P
` where ` = 0, 1, . . . , d − 1. Since µ = 1

d

∑d−1
`=0 µ0P

`, .c.f Theorem 7.7.22 this then

proves the statement of the law of large numbers.

Proof. Let i ∈ X be a distinguished state, let T := Ti and T k the successive return times to i,

as in (7.4) in Section 7.3. Then it can be shown that
Tk+1∑
l=Tk+1

f(xl), k = 1, 2, . . .

 are iid’s.

Let f ≥ 0. Note first that

E

 Tk+1∑
l=Tk+1

1xl=j

 = Ei

[
T∑
l=1

1xl=j

]
= µ(j) = π(j)Ei(T ), (7.22)

where µ is the same as the one defined in (7.9) in Section 7.6. Moreover, we used uniqueness (up

to multiplication constant) of Theorem 7.6.4 and the fact that
∑

j∈X µ(j) = Ei(T ), recalling

(7.11). Given (7.22), we then deduce that

Ei

 T 2∑
l=T+1

f(xl)

 = E

 T 2∑
l=T+1

∑
j∈X

f(j)1xl=j

 = E

∑
j∈X

f(j)
T 2∑

l=T+1

1xl=j


=
∑
j∈X

f(j)π(j)Ei(T ) =

∫
X
fdπ ·Ei(T ) <∞.

By Kolmogorov’s Strong LLN

1

n

Tn∑
l=0

f(xl)→
∫
X
fdπ ·Ei(T ) a.s., (7.23)

and

lim
n→∞

Tn

n
= lim

n→∞

1

n

n∑
k=1

(T k+1 − T k) = Ei(T
1 − T 0) = Ei(T ) , (7.24)
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where we used Lemma 7.3.2. Now let us consider η(n) = ηi(n) :=
∑n

k=1 1{xk=i}, then

T η(n) ≤ n < T η(n)+1.

This means that for f ≥ 0,

1

η(n)

T η(n)∑
l=0

f(xl) ≤
1

η(n)

n∑
l=0

f(xl) ≤
1

η(n)

T η(n)+1∑
l=0

f(xl) a.s., (7.25)

Since i is recurrent we have η(n) =
∑n

k=1 1{xk=i} → ∞ as n → ∞ (since state i is visited i.o.

almost surely, see Theorem 7.4.5), and by (7.23), both the left and the right hand term converge

to the same limit which leads to

lim
n→∞

1

η(n)

n∑
l=0

f(xl) =

∫
X
fdπ ·Ei(T ).

Take f ≡ 1, we see

lim
n→∞

n

η(n)
= Ei(T ). (7.26)

Finally,

lim
n→∞

1

n

n∑
l=0

f(xl) = lim
n→∞

η(n)

n

1

η(n)

n∑
l=0

f(xl) =

∫
X
fdπ.

This holds for any x0 = i and f ≥ 0 (The statement holds for each initial point implies it

holds for every initial distribution. Take this to the canonical space, since Pµ =
∫
X Pxdµ. If

the limit holds almost surely under each Px, it holds almost surely under Pµ. For the countable

state space, Pµ is a convex combination of Px’s. In other words, Pµ(limn→∞Φ(x·) = a) =∫
X Px(limn→∞Φ(x·) = a)dµ(x) = 0. In fact, Pµ =

∑
i µ(i)Pi.) Apply this to f+, f− ≥ 0 for

general f = f+ − f− to conclude the proof.

Remark 7.8.4 By (7.24), limn→∞
T η(n)

η(n) = Ei(T ), together with (7.26), we see in fact

lim
n→∞

T η(n)

n
= 1.

Remark 7.8.5 (Average time spent) Take f ≡ 1{j} in (7.23), we have

1

n

Tni∑
l=1

1{j}(xl)→
π(j)

π(i)
. (7.27)

The ratio π(j)
π(i) is the average time spent at site j during one excursion.

Alternative Proof for Thm 7.8.1:
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Proof. ** Since any function on X can be written as a finite linear combination of functions

1i
def
= 1{i}, it suffices to consider Theorem 7.8.1 with f = 1i, so that (7.20) becomes:

lim
m→∞

1

m

m∑
n=1

1i(xn) = π(i). (7.28)

In order to get (7.20), we should get rid of the expectation on the left-hand side.

We take x0 = i. Let T i0 = 0. Since {T k+1
i − T ki , k = 0, 1, 2, . . . } are independent i.i.d.’s with

second moments (Lemma 7.3.2) and distributed as T , the first return time to i, we apply to it

the law of large numbers,

lim
n→∞

Tni
n

= lim
n→∞

1

n

n∑
k=1

(T k+1
i − T ki ) =

1

n
(Ei(T

1
i − T 0

i )) = ET , (7.29)

almost surely (so far, we have three notations : T = Ti = T 1
i and ET = EiT .)

Since Tni ≥ n by definition, | nTni | ≤ 1. The above converges holds also in L1 by the Lebesgue’s

dominated convergence theorem,

lim
n→∞

E
∣∣∣nET

Tni
− 1
∣∣∣ = 0 . (7.30)

Since xTni = i, the definition of the times Tni yields the relation

n

Tni
=

1

Tni

Tni∑
k=0

1i(xk). (7.31)

We can rewrite this as

n

Tni
=

1

nET

nET∑
k=1

1i(xk) +Rn , (7.32)

where the error term Rn → 0. Taking expectation of the right hand side of (7.32), taking n→∞
and use the LLN in averaged form (7.21), one has

lim
n→∞

E
n

Tni
= lim

n→∞

1

nET

nET∑
k=1

P(xk = i) + lim
n→∞

E(Rn) = π(i) + lim
n→∞

E(Rn) = π(i) ,

and so by (7.29), 1
ET = π(i), proving part two of the assertion.

To show Rn → 0 a.s. and in L1, we estimate:

|Rn| =
∣∣∣
 1

Tni

Tni∑
k=nET

+
1

Tni

nET∑
k=1

− 1

nET

nET∑
k=1

1i(xk)
∣∣∣
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≤
∣∣∣Tni − n ·ET

Tni

∣∣∣+
∣∣∣ 1

Tni
− 1

nET

∣∣∣nET = 2
∣∣∣1− n ·ET

Tni

∣∣∣→ 0,

almost surely and in L1.

To show 1
m

∑m
n=1 1i(xn) converges, we return to (7.32) and take n→∞ using the fact that

nET
Tni
→ 1 and Rn → 0 almost surely, with a bit analysis we obtain the required LLN.

Example 7.8.1 (Empirical Averages) Let (xn) be a THMC on X = N+ with transition

probability P . Define yn = (xn, xn+1), then yn is a THMC on X 2. Then

P
(
yn+1 = (i, i′)|y0 = (i0, i

′
0), . . . , yn = (in, i

′
n), i′j = ij+i

)
= Pii′δi′n,i.

Let

Q(i,i′),(j,j′) =

{
Pjj′δi′j , if Pii′ > 0,

0, otherwise.

We can restrict yn to the subspace Y = {(i, i′), Pii′ > 0}.
Exercise: If (xn) is irreducible and recurrent, so is (yn) on Y.

It is useful to observe that

Q2
(i,i′),(j,j′) = Q(i,i′),(i′,j)Q(i′,j),(j,j′) = Pi′jPjj′

Q3
(i,i′),(j,j′) =

∞∑
k=1

Q(i,i′),(i′,k)Q
2
(i′,k),(j,j′) =

∞∑
k=1

Pi′kPkjPjj′

= P 2
i′jPjj′ .

Suppose (xn) is irreducible with invariant probability measure π. Set π̃((i, i′)) = π(i)Pii′ . Then

π̃ is invariant for (yn) and (yn) is positive recurrent. Let ϕ : X 2 → R be integrable w.r.t. π̃,

then
1

m

m∑
n=0

ϕ(xn, xn+1)→
∫
X 2

ϕdπ̃ =
∑
i,i′∈X

ϕ(i, i′)π(i)Pii′ .

Take e.g. ϕ(x, y) = 1
2 .

Remark 7.8.6 Later when we learnt Birkhoff’s ergodic theorem on the path space, we can

work with 1
m

∑m
n=0 ϕ(xn, xn+1) directly.

Application. (MCMC - Markov Chain Monte Carlo) Let π a probability measure, we would

like to compute ∫
X
fdπ.

This is approximated by the construction of a THMC (xn) with invariant measure π. Then

1

n

n∑
k=1

f(xi) ≈
∫
X
fdπ.
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The transition probability P = (Pij) is to be determined (i.e. devise appropriate algorithm).

For example choose P with

π(i)Pij = π(j)Pji.

7.9 Reversible Markov Chains

Suppose that π is a probability measure and (xn) a time homogeneous Markov chain. Fix a time

m > 0, set x̂n = xm−n. Then (x̂n) is a Markov chain, this follows from the equivalence of the

Markov property and the independence of its future and past when conditioned on the present.

However x̂n may not be a time-homogeneous Markov chain unless its initial distribution is an

invariant distribution. To have x̂ to be a copy of x, x0 should start from an invariant probability

measure π, for

P(xm = i) = P(x̂0 = i)

P(xm = i, x0 = j) = P(x0 = i, xm = j).

Summing over j, we have P(xm = i) = P(x0 = i), and also we see x̂0 is distributed as π.

We define P̂ by

π(i)Pij = π(j)P̂ji.

Since π(j) 6= 0, this is well defined and since π = πP ,
∑

i∈X P̂ji =
∑

i∈X
π(i)Pij
π(j) = 1. Assume

x0 ∼ π, then

P(xn = j|xn+1 = i) =
P(xn+1 = i|xn = j)P(xn = j)

P(xn+1 = i)
=
π(j)

π(i)
Pji = P̂ij .

So (xn) with time reversed is a THMC (x̂n) with t.p. P̂ .

Theorem 7.9.1 Suppose that (xn) is an irreducible positive recurrent time homogeneous Markov

chain with stochastic matrix P and with initial distribution the invariant probability measure π.

Then (x̂n) is again a time homogeneous Markov chain with initial distribution the invariant

probability measure π and with the stochastic matrix P̂ given by

P̂ji = Pij
π(i)

π(j)
.

Proof. Note that π(i) > 0 for every i and x̂0 = xM is distributed as π. For x̂ to be a Markov

process with stochastic matrix P̂ and initial distribution π it is sufficient to compute is distri-

bution,

P(x̂0 = i0, . . . , x̂n = in) = P(xM = i0, . . . , xM−n = in)

= π(in)Pinin−1 . . . Pi1i0
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=
π(in)

π(in−1
)Pinin−1 . . .

π(i1)

π(i0)
Pi1i0π(i0)

= P̂in−1,in . . . P̂i0,i1π(i0).

In view of Theorem 5.4.7, (x̂n) is a THMC.

Theorem 7.9.2 If π(i)Pij = π(j)Pji for all i, j, then x̂n is also a time homogeneous Markov

chain with stochastic matrix P and with initial distribution π.

Definition 7.9.3 • The relation

π(i)Pij = π(j)Pji, ∀i, j (7.33)

is called detailed balance.

• A Markov chain is said to be reversible if the new Markov chain (xm−n) is again a time

homogeneous Markov chain with stochastic matrix P and with initial distribution π.

Summing over j in (7.33), we see that π is automatically an invariant measure for P . If this

holds we say the Markov process (xn) is reversible (with respect to π.) For a reversible chain,

Pij 6= 0 implies Pji 6= 0, so the arrows between any two sites in the incidence graph must be

in both directions. For irreducible chains, we can always rotate the sites, so that the stochastic

matrix has the property: its lower diagonal has non-zero entry everywhere. Then we may want

to multiply the rows by a number so that the the upper triangle equals the lower triangle and

check the resulting matrix is symmetric.

The detailed balance relation allows one to easily ‘guess’ an invariant measure if one believes

that a given process is reversible by using the equality

πi
πj

=
Pji
Pij

.

Example 7.9.1 Let us consider a Markov chain on two states {1, 2} with P =

(
1− α α

β 1− β.

)
.

Then π(1)P12 = π(2)P21 means απ(1) = βπ(2). So π is proportional to (β, α).

10

β

α

Exercise 7.9.1 Let us define 〈f, g〉π =
∫
fgdπ =

∑
i f(i)g(i)π(i). Then P is reversible w.r.t. π

if and only if

〈Pf, g〉 = 〈f, Pg〉.
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7.9.1 Application : Numerical Simulation

Suppose that we want to estimate the average of a function f with respect to a probability mea-

sure π, which is
∑

i∈X f(i)π(i). We may choose i.i.d. random variable with common probability

distribution π. However in many situations, such as in statistical physics, X is very large and

the π is only known up to a multiple, e.g.
∑

i∈X π(i) is very large and often involving combi-

natory factors which are difficult to add up and so it is often impossible to compute
∑

i∈X π(i)

precisely. Then we might use the Mont Carlo Markov chain method (MCMC). This started with

Metropolis (1953).

The Mont Carlo Markov chain method (MCMC) for computing the average of a function f

with respect to a probability measure π is to construct a finite state irreducible Markov chain

with invariant measure π, then use the law of large numbers for the estimation:∑
i∈X

f(i)π(i) = lim
n→∞

1

n

n∑
k=1

f(xk).

The convergence rate is quite good. If we can construct a Markov chain which is time reversible

then it is sufficient to know π up to a constant. For such processes Pijπj = Pjiπi, and so the

total mass of the finite invariant measure disappears in the ratio.

This relation is not sufficient to construct the stochastic matrix. However if we start any

irreducible Markov chain Q we may define

Pij =Qij ∧
π(j)

π(i)
Qji, i 6= j,

Pii =1−
∑
j 6=i

Pij

Then, π(i)Pij = π(i)Qij ∧ π(j)Qji = π(j)Pji, so that P is reversible w.r.t. π. We write

Pij = Qij − αij ,

where αij = min
(

1, π(j)
π(i)

Qji
Qij

)
is called the acceptance probability (for accepting the state j

proposed by the matrix Q).

This construction does not necessarily produce an irreducible chain (and so in particular there

might be other invariant measures, to which the chain may converge to when a wrong initial

date is used.) To produce non-irreducible chain, we start with Q on a non-oriented graph. Then

there are two standard choices for Q, they are known respectively as the Metropolis algorithm

and the Gibbs sampler.

Observe the difference of MCMC versus MC is that we may start from any initial distribution,

when time runs its course we will arrive approximately the invariant probability distribution,

while Monte Carlo method uses the invariant probability distribution as the initial distribution.
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7.9.2 Examples

Example 7.9.2 Let us consider a graph (V,E) with V the set of vertices and E the set of edges.

We will assume that the graph is undirected (non-oriented) and connected.

1 2 3

4 5

If i, j are connected by an edge, we write i ∼ j and say they are adjacent vertices. We assume

that there is a weight function w on E, 0 < w(i, j) = w(j, i) < ∞ if (i, j) is an edge. Let V be

the state space of a Markov chain with transition mechanism given by:

Pij =
w(i, j)

w(i)
, w(i) =

∑
j∼i

w(i, j).

Let w =
∑

iw(i). Then

π(i) =
w(i)

w

defines a probability measure and the chain is reversible with respect π.

It is clear that the chain is irreducible if and only if the graph is connected.

We may also assign a degree to a vertex: d(i) is the number of edges from i, and define

Pij =

{
1
d(i) , if i and j are connected by an edge,

0, otherwise .

Then π(j) = d(j)
2|E| where |E| denotes the number of edges.

Consider a chessboard with only one pieces. Let this piece moves on the otherwise empty

chessboard by at every timestep choosing with equal probability the eligible moves. Then it is

simple to compute the average time it returns to its initial position i: it is 2|E|
d(i) . Then it is a

matter to count the eligible moves. A standard chessboard has 64 squares. A king piece can

move to any one of the square adjacent to it, the graph is connected. A knight’s eligible moves

are: two steps horizontally and one step vertically. Then umber of edges for the knight move to

be 168. (The pawn’s graph is not undirected, the bishop’s graph is not connected.)
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7.10 Finite State Markov Chain

Let us now consider finite state space X = {1, 2, . . . , N}. In view of previous chapter, X is the

union of disjoint communication classes. The minimal/closed classes consist of recurrent states,

the non-minimal ones consist of transient states.

7.10.1 Characterising aperiodic irreducible chains

This follows from Lemma 7.7.19 and similarly the following proposition.

Proposition 7.10.1 Let X = {1, . . . , N}. The three following conditions are equivalent:

(a) P is irreducible and aperiodic.

(b) Pn is irreducible for every n ≥ 1.

(c) Let δn = mini,j=1,...N (Pn)ij. Then there exists n0 ≥ 1 such that δn0 > 0.

(Incidentally δn ≥ δn0 for n ≥ n0.)

Proof. If P is periodic of period d and irreducible, then P d is reducible and (b) trivially im-

plies (a).

(c) =⇒ (a) Suppose there is n0 such that mini,j=1,...N (Pn0)ij = δn0 > 0. Hence Pn0 has

strictly positive entries, this clearly implies that P is irreducible (since there is always a path

of length n0 between any two vertices). Now from the Chapman-Kolmogorov equation, we get

that for all j, k ≤ N ,

Pn0+m
jk =

N∑
l=1

Pmjl P
n0
lk ≥ δn0

N∑
l=1

Pmjl = δn0 , ∀m.

Similarly we see that {δn}n≥1 is increasing, since for all j, k ≤ N

Pn+1
jk =

N∑
l=1

PjlP
n
lk ≥ δn

N∑
l=1

Pjl = δn.

Hence δn+1 ≥ δn, thus inductively we see that for all n ≥ n0, Pn has all entries strictly positive.

Therefore n0, n0 + 1, · · · ∈ R(i) and d(i) = 1, for any i. Hence P is aperiodic and Pn is

irreducible for n ≥ n0. We note that for n < n0, (P kn)ij > 0 for some k sufficiently large, then

Pn is irreducible. Hence Pn is irreducible for every n ≥ 0. Thus (c) implies (b).

(a) =⇒ (c): Suppose P is irreducible and aperiodic. By the number theory Lemma 7.7.19,

for all 1 ≤ i ≤ N there exists ki such that kd(i) ∈ R(i) for all k ≥ ki. Let N0 = maxi∈X {ki}.
Since P is aperiodic, it implies that d(i) = 1 for all i, and therefore

Pnii > 0, ∀i ∈ X , ∀n ≥ N0.
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Because P is irreducible, then for all 1 ≤ j, i ≤ N there exists m(i, j) ∈ N such that P
m(i,j)
ij > 0.

Then

P
n+m(i,j)
ij ≥ PniiP

m(i,j)
ij > 0.

Let M = max1≤j,i≤N m(i, j) <∞, and define

n0 = N0 +M.

Since all the entries of P are non-negative, for n ≥ n0

Pnij =
N∑
k=1

P
m(i,j)
ik P

n−m(i,j)
kj ≥ Pm(i,j)

ij P
n−m(i,j)
jj > 0 .

Where for the last inequality we used that P
m(i,j)
ij > 0 and that n−m(i, j) ≥ N0 ≥ ki and thus

P
n−m(i,j)
jj > 0. Taking minimum over all i, j ∈ X in the above inequality gives us δn ≥ δn0 > 0.

Lemma 7.10.2 Let (xn) be an aperiodic and irreducible THMC on a finite state space with t.p.

P . Then for any two states i, j ∈ X ,

Ej [(Ti)
α] <∞ for any α ≥ 1.

Proof. Let i, j ∈ X , then Pj(Ti <∞) = 1.

Ej [(Ti)
α] =

∑
n≥0

nαPj(Ti = n) ≤
∑
n≥0

nαPj(Ti > n− 1). (7.34)

Let n0 be the number such that δn0 = mini,j∈X (Pn0
ij ) > 0 (see Proposition 7.10.1), then

P(xn0(k+1) 6= i|xn0k 6= i) ≤
∑
l 6=i

P(xn0(k+1) 6= i|xn0k = l)
P(xn0k = l)

P(xn0k 6= i)

≤
∑
l 6=i

(1− δn0)
P(xn0k = l)

P(xn0k 6= i)
≤ 1− δn0

Hence

Pj(Ti > n0(k + 1)) ≤ Pj(xn0(k+1) 6= i, . . . , x2n0 6= i, xn0 6= i)

= P(xn0(k+1) 6= i|xn0k 6= i)Pj(xn0k 6= i, . . . , xn0 6= i)

≤ (1− δn0)Pj(Ti > n0k) ≤ · · · ≤ (1− δn0)k+1.

For any n, there exists some k such that n ∈ [n0k, n0(k + 1)]. Then

Pj(Ti > n− 1) ≤ Pj(Ti > n0k − 1) ≤ (1− δn0)k.
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Hence, from (7.34), we can estimate

Ej [(Ti)
α] ≤

∑
n≥0

nα(1− δn0)k ≤
∞∑
k=0

[n0(k + 1)]α(1− δn0)k

= n0
α
∞∑
k=1

kα(1− δn0)k−1 <∞,

hence Ti has moments of all order.

By Proposition 7.10.1, we have:

Lemma 7.10.3 Let X = {1, . . . , N}. If P is irreducible and aperiodic, show that there exists

n > 0 and δ > 0 such that ηPn ≥ δ‖η‖1 1 for every vector η ∈ RN
+ with entries ηi ≥ 0. Here 1

is the row vector with every entry being 1 and ‖η‖1 =
∑

i |ηi|.

Proof. Simply note that ηPn(j) =
∑

i∈X η(i)Pnij ≥ mini,j∈X P
n
ij

∑
i∈X η(i).

Lemma 7.10.4 Suppose that P is an irreducible stochastic matrix. Let Tn = 1
n(P +P 2 + . . .+

Pn). Then there exists a number n0 s.t. Tn has positive entries. There exists δ > 0 such that

min
i,j=1,...,N

Tnij ≥ δ.

Thus if η ∈ RN is a vector with non-negative entries, ηTn ≥ δ1‖η‖11.

Proof. This is Proposition 7.10.1 if P is aperiodic. If P has period d > 1, then P d is aperiodic

and X decomposes into the union of disjoint blocks Ai. On Ak, P
d is irreducible and so Pn0d > 0

for some n0. Also for j ∈ Ak+1, Pi0j > 0 for some i0 ∈ Ak. Thus Pn0d+1
ij ≥ Pn0d

ii0
Pi0j > 0. This

shows that Pn0d
ij +Pn0d+1

ij > 0 for i, j ∈ Ak∪Ak+1. By induction, this proves mini,j=1,...,N T
n
ij ≥ δ.

(The final part follows again from η(i) =
∑N

j=1 T
n
ijη(j) ≥ δ

∑N
j=1 η(j) = δ‖η‖1.)

7.10.2 Perron-Frobenius Theorem

In this section we will focus on the Perron-Frobenius theorem. First, let us recall some notions

on square matrices of finite size.

Spectrum of a stochastic matrix. The spectrum of a matrix is the set of its eigenvalues

(and information on their eigenvectors if anything can be deduced). In particular, for a given

stochastic matrix P = (Pij)1≤i,j≤N , we are interested in finding (non-zero) row vector π ∈ RN

that satisfies equation

πP = π. (7.35)
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Then π is a left eigenvector of P with eigenvalue 1. Equivalently P TπT = πT , and πT is an

eigenvector of P T with corresponding eigenvalue 1. Let us note that under transposition the

determinant is preserved, i.e. ∣∣P T − λI∣∣ = |P − λI|.

Then P T and P have the same eigenvalues. Let 1 = (1, . . . , 1), then (P1T )k =
∑N

j=1 Pkj = 1,

which implies that P1 = 1. Hence 1 is an eigenvalue also for P T , thus (7.35) has a non trivial

solution.

Notation. Let X = {1, . . . , N} in this section. The L1-norm for (row) vectors in RN is

defined by ‖µ‖1 =
∑N

i=1 |µ(i)|. Write

µ+ = (µ(1) ∨ 0, . . . , µ(N) ∨ 0)

for the positive part of µ and similarly µ− for its negative part

µ− =
(

(−µ(1)) ∨ 0, . . . , (−µ(N)) ∨ 0)
)
.

By µ ≥ 0, we mean µ− = 0. Then we have the following

Lemma 7.10.5 1. ‖µ‖1 = ‖µ+‖1 + ‖µ−‖1.

2. If
∑N

i=1 µ(i) = 0, then ‖µ+‖1 = ‖µ−‖1 = 1
2‖µ‖1.

3. And, if µ1 and µ2 are positive vectors (i.e. all entries are non-negative), then the triangle

inequality becomes equality: ‖µ1 + µ2‖1 = ‖µ1‖1 + ‖µ2‖1.

Lemma 7.10.6 Let P be a stochastic matrix, then

(1) P preserves the mass of a positive measure:
∑N

i=1(µP )(i) =
∑N

i=1 µ(i).

(2) ‖µP‖1 ≤ ‖µ‖1 . If µ ∈ RN is a positive vector, the equality holds.

We can let P act on CN , the above inequality holds for µ ∈ CN .

The first statement is obvious. For (2) just observe that,

‖µP‖1 =

N∑
j=1

∣∣ N∑
i=1

µ(i)Pi,j

∣∣∣ ≤ N∑
i=1

N∑
j=1

Pi,j

∣∣∣µ(i)
∣∣∣ =

N∑
i=1

∣∣∣µ(i)
∣∣∣ = ‖µ‖1.

We write |µ| for the vector with entries |µi| and
∑

(µ) for the number
∑N

i=1 µi.

Theorem 7.10.7 (Perron-Frobenius) Let P be an N×N irreducible stochastic matrix where

N is a natural number. Then the following hold.
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(A) The real number 1 is a (left) eigenvalue for P , and there exists exactly one (left) eigenvector

π (up to multiplication by a constant) with πP = π.

Furthermore, π can be chosen such that all its entries are strictly positive and with
∑N

i=1 π(i) = 1.

This unique eigenvector is called the Perron-Frobenius vector of P .

(B) Every eigenvalue of P must satisfy |λ| ≤ 1. If P is furthermore aperiodic, all other eigen-

values satisfy |λ| < 1.

(C) ** If P is periodic with period p, there are eigenvalues λj = e
2iπj
p with associated eigenvector

µj(n) = λ−kj π(n) , if n ∈ Ak, (7.36)

where π is the Perron-Frobenius vector of P and the sets Ak are the ones associated to P

by Lemma 7.7.20.

Since ‖µP‖1 ≤ ‖µ‖1 for every vector µ ∈ CN (see Exercise 7.10.6), the eigenvalues of P must

all satisfy |λ| ≤ 1.

Proof. Step 1. Since ‖µP‖1 ≤ ‖µ‖1 for every vector µ ∈ CN (see Exercise 7.10.6), the eigen-

values of P must all satisfy |λ| ≤ 1. This can be seen by the fact that µP = λµ, implies

‖µP‖1 = |λ|‖µ‖1. Then |λ| ≤ 1 since

‖µP‖1 =
∑
i∈X

∑
j∈X
|µ(i)P ij | ≤

∑
i∈X
|µ(i)| = ‖µ‖1.

– Proof of (A).

Step 2. Since the vector 1 = 1
N (1, 1, . . . , 1) is an eigenvector with eigenvalue 1 for P T , there

exists an eigenvector with eigenvalue 1 for P , let us call it π. Since P is real, we can choose π

to be real too. Let us now prove that π can be chosen positive as well.

Step 3. Define the matrix Tn = 1
n(P +P 2 + . . .+Pn). Clearly Tn is again a stochastic matrix

and π is an eigenvector of Tn with eigenvalue 1, i.e. πTn = π. If either ‖π+‖1 = 0 or ‖π−‖1 = 0,

the proof is complete.

Otherwise define α = min{‖π+‖1, ‖π−‖1}. Since P is irreducible, by Lemma 7.10.4 there exists

n such that Tn has strictly positive entries. This implies ∃δ > 0 such that π+T
n ≥ δα1 and

π−T
n ≥ δα1. Therefore,

‖πTn‖1 = ‖π+T
n − π−Tn‖1 = ‖π+T

n − δα1 + δα1− π−Tn‖1
≤ ‖π+T

n − δα1‖1 + ‖π−Tn − δα1‖1
= ‖π+T

n‖1 − ‖δα1‖1 + ‖π−Tn‖1 − ‖δα1‖1
= ‖πTn‖1 − 2δαN = ‖π‖1 − 2δαN .
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Since δ > 0, one must have α = 0, which implies that π is either entirely positive or entirely

negative (in which case −π is entirely positive).

Step 4. From now on, we normalise π in such a way that π ≥ 0 and it has mass 1:
∑N

i=1 π(i) = 1.

All entries of π are strictly positive since π = πTn and hence (again by Lemma 7.10.4)

π(i) = πTn(i) =
∑
j∈X

π(j)Tnji ≥ δ
∑
j∈X

π(j) > δ > 0.

Step 5. The fact that exists only one π (up to multiplication by a scalar) such that πP = π is

now easy. Assume that π, π̃ satisfy p̃iP = p̃i and πP = π with nonnegative entries and mass 1.

Then the vector ν = π − π̃ is also an eigenvector with eigenvalue 1 for P , i.e. νP = ν. By the

previous argument, we can assume that ν = π − π̃ ≥ 0. But

0 =
∑
i∈X

π(i)−
∑
i∈X

π̃(i) =
∑
i∈X

(π(i)− π̃(i))︸ ︷︷ ︸
≥0

.

Hence π(i) = π̃(i) for all i, thus uniqueness holds. This completes the proof of (A).

(The rest of the proof is not given in class and not examinable)

To part (B) and (C), we show that λj = e
2π j

p , p = 0, . . . , p− 1, where d = d(i) for some state

i and therefore for all, are the only eigenvalues on the unit circle of CN , centred at 0.

-Consider an eigenvalue with |λ| = 1 but λ 6= 1. Let λ = eiθ and ν =
(
r1e

iθ1 , . . . , rNe
iθN ,

)
one of its an eigenvectors. We can choose the phases in such a way that ri ≥ 0, and we normalise

them in such a way that
∑N

i=1 ri = 1. The relation µP = λµ,
∑N

j=1 νjPjk = eiθνk, then translates

into
N∑
j=1

eiθjrjPjk = ei(θ+θk)rk . (7.37)

Multiplying both sides by e−i(θ+θk) and summing up yields
∑N

j,k=1 e
i(θj−θk−θ)rjPjk = 1. On the

other hand, we know that rjPjk ≥ 0 and that
∑N

j,k=1 rjPjk = 1. (Indeed, let aj,k be the real

part of ei(θj−θk−θ), we must have
∑

j,k aj,krjPjk = 1. Since aj,k ≤ 1,
∑N

j,k=1 rjPjk can only be

one if the multiple aj,k before a non-zero rjPjk must be 1.) This implies that

ei(θj−θk−θ) = 1 , for every j and k such that rjPjk 6= 0. (7.38)

Combining this with (7.37) in turn implies that r = π. (then rj 6= 0 for any j) Indeed for every

k,
N∑
j=1

ei(θ+θk)rjPjk = ei(θ+θk)rk, i.e.

N∑
j=1

rjPjk = rk,

so r = (1, . . . , rN ) is the Perron-Frobenius vector π.
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–Since Pn is a stochastic matrix with eigenvalue λ = eiθn, repeat the previous arguments

shows that

eiθj = eiθn+iθk , for every j and k such that Pnjk 6= 0. (7.39)

Since P is irreducible, R(i) contains every integer of the form kp, where k ≥ K for some K

and so we can take k = j above, and n = Kp and n = (K + 1)p. Then θKp = 0(mod2π),

θ(K + 1)p = 0(mod2π) which implies that θp = 0 (mod 2π). Thus all possible eigenvalues with

|λ| = 1 are of the form λj = e
i2π j

p .

– In particular if P is aperiodic, 1 is then the only eigenvalue with modulus 1.

–We find µ which satisfies µP = λµ. By multiplying µ with a scalar, we can assume that

θ1 = 0. The relation (7.38) allow us to assign θj for λ = eiθ in the following way. If k ∈ A0, A0

being the cycle containing 1, then we set θk = θ1 = 0. For k ∈ A1, the next cycle, P1k 6= 0, we

set eiθk = e−iθ = λ−1. Iterating this procedure and moving to the next cycle An we may define

θk = λ−n (mod 2π) for every k ∈ An, thus defining every θk. We can verify as follows that this is

an eigenvector associated to λ. Equation (7.37) can be written as

N∑
j=1

ei(θj−θ−θk)π(j)Pjk = π(k).

Fix k, on its left hand side, the only non-zero term Pjk are those j in cycle class flowing into

that of k. For example for k = 1, θ1 = 0, θj = λ−(p−1) for j ∈ Ap−1, this is∑
j∈Ap−1

π(j)Pj1 = π(1),

this is the identity for Perron-Frobenius vector, observing that
∑

j∈Ap−1
λ1π(j)Pj1 =

∑N
j=1 λ

1π(j)Pj1.

This is true for all k ∈ A0. The rest of the relations can be verified similarly.

We emphasize that an irreducible stochastic matrix P always has left eigenvalue 1, whose

eigenspace is one dimensional .

Since every irreducible Markov chain on a finite state space has an invariant probability

measure, (since π(i) > 0 for all i) we see that

Corollary 7.10.8 An irreducible Markov chain on a finite state space is positive recurrent.

We remark that an application of the Perron-Frobenius theorem is to give a direct proof for

the ergodic theorem (Theorem 7.7.6) for a finite state Markov chain. If P is irreducible and

aperiodic, then all eigenvalues of P have modulus strictly smaller than 1, except for the isolated

eigenvalue 1 with eigenvector π. We give another proof below, which explores the fact that

Pnη ≥ δ‖η‖11.



7.10. FINITE STATE MARKOV CHAIN 114

Exercise 7.10.1 Let P be irreducible and aperiodic and let π be its Perron-Frobenius vector.

Prove that, without refereeing to the general theorem for MC on a countable state space, for

any probability measure ν ∈ RN , one has limn→∞ νP
n = π.

Proof. It follows from Lemma 7.10.3 that there exist values n > 0 and δ ∈ (0, 1) such that

Pnη ≥ δ‖η‖11 for every positive vector η. Write a = ‖(π − ν)+‖1 = ‖(π − ν)−‖1 = 1
2‖π − ν‖1.

One then has

‖Pnν − π‖1 = ‖Pn(π − ν)‖1 = ‖Pn(π − ν)+ − Pn(π − ν)−‖1
≤
∥∥Pn(π − ν)+ − δa · 1

∥∥
1

+
∥∥∥Pn(π − ν)− − δ a · 1

∥∥∥
1

= ‖Pn(π − ν)+‖1 − δ N a+ ‖Pn(π − ν)−‖1 − δN a

≤ ‖(π − ν)+‖1 + ‖(π − ν)−‖1 − δN‖π − ν‖1
≤ (1− δN)‖π − ν‖1 .

Since ν was arbitrary, one gets ‖P knν−π‖1 ≤ (1− δ)k‖π− ν‖1 by iterating this bound, we then

take k →∞ to conclude (observe that ‖Pm(ν − π)‖1 decreases with m. )

Under the conditions of the theorem, each row of Pn converges to π (just take ν to be the

jth basis vector). We see that limn→∞ P
n
ji = π(i) for every i.

Exercise 7.10.2 Show that the conclusion of Exercise 7.10.1 also hold if one only assumes that∑
i νi = 1.

7.10.3 The Structure Theorem for Invariant Measures

If πi, i = 1, . . . , k are invariant probability measures of P and if ai are positive numbers with∑k
i=1 ai = 1, then

∑k
i=1 aiπi is an invariant probability measure of P . The measure

∑k
i=1 aiπi

is called a convex combination of {µ1, . . . , µk}.

Theorem 7.10.9 Let P be an arbitrary stochastic matrix. The set of all invariant probability

measures of P consists of all convex linear combinations of the Perron-Frobenius vectors of the

restrictions of P to its recurrent communication classes.

Proof. Any convex linear combinations of the Perron-Frobenius vectors of the restrictions of P

to its recurrent communication classes is an invariant probability measure for P .

For the other way around, let A0 be the collections of sites not in one of the minimal classes,
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and A1, . . . , Ak denote the minimal classes. The matrix P can be written as

P =


T S1 S2 . . . Sk
0 P1 0 . . . 0

0 0 P2 . . . 0

. . .

0 0 0 . . . Pk

 . (7.40)

Let µ = (v0, v1, . . . , vk) be an invariant probability measure, where v0 is a vector corresponds

to the transient states and, for i ∈ {1, . . . , k}, each vi is a vector corresponding to states in the

closed communications class Ai. Then,

µP =
(
v0, v1, v2, . . . vk

)

T S1 S2 . . . Sk
0 P1 0 . . . 0

0 0 P2 . . . 0

. . .

0 0 0 . . . Pk


=
(
v0T, v0S1 + v1P1, . . . , v0Sk + vkPk

)
Since an invariant probability measure does not charge transient states, v0 = 0. Consequently,(

0, v1P1, . . . , vkPk

)
= (0, v1, . . . , vk).

Since viPi = vi, for i = 1, . . . , k and each Pi is irreducible, by Perron-Frobenius theorem, vi is

a multiple of the Perron-Frobenius vectors πi of Pi. Then µ = (0, α1π1, . . . , αkπk) =
∑k

i=1 αivi.

Since µ is a probability measure, with
∑
αi = 1 and vi > 0, concluding the proof.

7.10.4 Rate of Convergence

Theorem 7.10.10 (Minorisation) Suppose that there exist j0 and a number δ > 0 s.t. Pij0 ≥
δ for all i. If µ is any probability vector in X , then µPn is a Cauchy sequence. Denote by π its

limit, then π is invariant. Furthermore, π(j0) ≥ δ and ‖µPn − π‖1 ≤ 2(1− δ)n.

Proof. Let η be the row column with a single non-zero entry ηj0 = 1. If µ is a probability

measure on X , µP ≥ δη following from the assumption that Pij0 ≥ δ for all i. Let ν be a vector

with
∑
ν(i) = 0 then νA = 0. Since 2‖ν‖1 = ‖ν+‖1 = ‖ν−‖1, then ν̃+ = ν+

1
2
‖ν‖1

and ν̃− = ν−
1
2
‖ν‖1

are probability measures.

‖νP‖1 =
1

2
‖ν‖1

∥∥∥ ν
1
2‖ν‖1

. P
∥∥∥

1
=

1

2
‖ν‖1(1− δ)

∥∥∥∥ ν̃+P − δη
1− δ

− ν̃−P − δη
1− δ

∥∥∥∥
1

≤ (1− δ)‖ν‖1.
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In the last step we use triangle inequality for the L1 norm, and that the L1 norm for a probability

measures is 1.

Since both µPm and µ are probability vectors,∑
i∈X

(µPm(i)− µ(i)) = 0.

Letting ν = µPm − µ in the previous estimate,

‖µPn+m − µPn‖ ≤ ‖(µPm − µ)Pn‖ ≤ (1− δ)n‖µPm − µ‖ → 0.

Thus {µPn} is indeed a Cauchy sequence and has limit π which is indeed a probability vector

(use positive preserving of the limit, and that the sum of entries of µPn is always 1). If π is the

limit,

πP = lim
n→∞

(µPn) P = lim
n→∞

µPn+1 = π.

Similarly

‖µPn − π‖1 = ‖µPn − πPn‖1 ≤ (1− δ)n‖|µ− π‖1 ≤ 2(1− δ)n.

Take µ = ei, for any j, Pnij = eiP
n(j) → π(j). Since Pij0 ≥ δ for all i, P 2

ij0
=
∑

k PikPkj0 ≥
δ
∑

k∈X Pik = δ. By induction Pnij0 ≥ δ.

π(j0) =
∑
k

π(k) Pnkj0 ≥ δ
∑
k

π(k) = δ.

This completes the proof.

Sub-stochastic matrices

Definition 7.10.11 An N ×N matrix P with positive entries such that
∑

i Pji ≤ 1 for all j is

a substochastic matrix.

Substochastic matrices are typically obtained when we restrict a stochastic matrix to a subset

of indices.

Example 7.10.1 Consider the stochastic matrix from Example 7.1.5, and its restrictions to the

communication classes {2, 4, 5, 7}, {1, 3} and {6}.

P =



1
3 0 2

3 0 0 0 0

0 1
2 0 1

2 0 0 0
1
3 0 0 1

3 0 1
3 0

0 0 0 0 1
2 0 1

2

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0


, P1 =

(
1
3

2
3

1
3 0

)
, P2 =


1
2

1
2 0 0

0 0 1
2

1
2

0 1 0 0

1 0 0 0

, P6 = (1).
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One has the following:

Lemma 7.10.12 Let P be an irreducible substochastic matrix which is not a stochastic matrix.

Then, µPn → 0 for every probability measure1 µ and the convergence is exponential. More

specifically there exists λ > 0 such that

‖Pnµ‖1 ≤ e−λn.

In particular, the eigenvalues of P are all of modulus strictly less than 1 and so 1−P is invertible.

Proof. It is sufficient to prove the claim for µ positive with norm 1 (unless µ = 0). Define

Tn = 1
n(P + · · ·+Pn) as in the proof of the Perron-Frobenius theorem. For a positive vector µ,

one has ‖µP‖1 ≤ ‖µ‖1 and one has also

‖µPn+1‖1 =
1

n
(n‖µPn+1‖1) ≤ 1

n
(‖µP 2‖1 + · · ·+ ‖µPn+1‖1) = ‖µTnP‖1

for every n > 0. Choose n0 such that Tn0 has positive entries (such an n exists by the irreducibil-

ity of P ). Let δ = minij T
n0
ij > 0. Then, µTn0 ≥ δ‖µ‖11. Since P is not a stochastic matrix,

there exists α > 0 and an index i0 such that
∑

j∈X Pi0j = 1 − α. Let ei0 = (0, . . . , 1, . . . , 0)

denote the unit vector with entries 1 at i0th entry and with 0 at other entries. Therefore

‖µPn0+1‖1 ≤ ‖µTn0P‖1 = ‖µTn0(P − Pδei0) + µPδei0‖1 = ‖µPTn0 − δµPei0)‖1 + δ‖Pei0‖1
≤ ‖µTn0 − δei0‖1 + δ(1− α)

= ‖µTn0‖1 − δ · ‖ei0‖1 + δ(1− α) ≤ (1− αδ) = (1− αδ)‖µ‖1.

Choose and fix a natural number n0 such that the above inequality holds, then

‖µP (n0+1)k‖1 ≤ (1− δα)k‖µ‖1
(k→∞)→ 0,

which concludes the convergence. The rate of Pn convergence is at least λn where λ = (1 −
δα)

1
n0+1 , thus concluding the proof.

Recall first the Borel-Cantelli lemma from probability theory:

Lemma 7.10.13 (Borel-Cantelli) Let {An}n≥0 be a sequence of events in a probability space

Ω. If
∑

n P(An) < ∞, then the probability that infinitely many of these events happen is 0.

Equivalently this implies that P(∩∞n=1 ∪∞k=n An) = 0.

Exercise 7.10.3 Let {xn} be a Markov process with transition probabilities P and let i be

from a non-minimal class. Show that without referring to the general theorem on conntabel

state space, that the probability that xn ∈ [i] for an infinite number of values n is 0.

1For any positive measure this is ‖µ‖1e−λn, an exponential rate e−λ
′n (some λ′) for large n.
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Proof. By the strong Markov property, it is sufficient to prove the theorem for the particular

case when x0 = j for a state j ∈ [i]. We take as An the event {xn ∈ [i]}. By the Borel-Cantelli

lemma, the claim follows if we can show that∑
n

Pj(xn ∈ [i]) =
∑
n

∑
k∈[i]

(Pn)kj <∞ .

Denote by P̃ the restriction of P to the indices in [i]. Then P̃ is an irreducible substochastic

matrix and one has (Pn)kj = (P̃n)kj for k, j ∈ [i]. The result follows from Lemma 7.10.12.

7.10.5 The long run probability for reducible chains

If the chain is reducible and aperiodic we can also work out the probability that the chain

eventually ends in a particular state. For example if i is a transient state, this is 0. We know

limn→∞ Pµ(xn = i) = π(i), in particular, limn→∞ P
n
ji = Pj(xn = i) = π(i) for every state j.

Such limit can also be computed when the chain is reducible.

Let 0 stand for a sink (with [0] containing only one single element 0 which is a recurrent

state) and let

B = { the chain eventually ends at site 0}.

Since 0 is a sink,

B = {ω : there exists n0 s.t. if n ≥ n0 xn(ω) = i}.

Set f(j) = Pj(B). This is the probability that the chain starts from j ends at 0 eventually.

Then

f(j) = Ej(E(the chain eventually ends at site 0 |x1))

= Ej(f(x1)) =
∑
k∈X

f(k)P(x1 = k|x0 = j)

=
∑
k∈X

Pjkf(k) = (Pf)(j).

Remark 7.10.14 We note that if 0 is a sink, f(j) = limn→∞ P
n
j0. Indeed, since the chain stays

at 0 when arrived at 0, Bn = {ω : xn(ω) = 0} is increasing set with limit B = ∪nBn. Hence

Pnj0 = Pj(Bn)→ Pj(B) = f(j).

If the minimal classes are not singletons, we may amalgamate elements of each minimal

class together and treat such classes as singletons, work out the ratio of the probability flowing

into each of the minimal classes, and then redistribute this probability among their elements

according to the ratio of their Perron-Frobenius vectors. This amalgamating method can be

done because once the chain enters it, it never returns. To the rest of the chains, its exact
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whereabout is not observable and of no relevance. The probability we calculated is then the

probability it enters the minimal classes. The probability limn→∞ P
n
ji , where i is in the minimal

class, is then obtained according to the unique invariant probability distribution of the reduced

chain.

In order to conclude this subsection, let us give a formula for the probability that, starting

from a given transient state, the Markov process will eventually end up in a given recurrence

class. Suppose that all recurrent communication classes consist of singletons (called sinks).

In order to somewhat simplify the argument, we assume that the recurrent classes consist of

single points, that the states 1, . . . q are transient, q + 1, . . . , q + k are recurrent. Therefore, the

transition matrix P can be written as

P =

(
T S

0 P̃

)
, (7.41)

where T is some sub-stochastic matrix and P̃ is a stochastic matrix.

Define now the matrix Aij the probability that the process starting at the transient state i

will eventually end up in the recurrent state j.

Proposition 7.10.15 The matrix A is given by A = (I − T )−1S.

Proof. The invertibility of (I − T ) is an immediate consequence of Lemma 7.10.12. One has

Aij =
∑
k∈X

P
(
the process reaches j eventually, x1 = k |x0 = i

)
=

q∑
k=1

P
(
the process reaches j eventually |x1 = k, x0 = i

)
Pi(x1 = k) + Pi(x1 = j)

=
T∑
k=1

AkjTik + Sij ,

where we used the Markov property to go from the first to the second line. In matrix notation,

this reads A = TA+ S, and therefore A = (I − T )−1S.
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7.10.6 Examples

Example 7.10.2 Let X = {0, 1, 2, 3, 4, 5} and let (xn) be the time homogeneous Markov chain

with stochastic matrix

P =



1 0 0 0 0 0
1
3

1
3

1
3 0 0 0

0 1
3

1
3

1
3 0 0

0 0 1
3

1
3

1
3 0

0 0 0 1
3

1
3

1
3

0 0 0 0 0 1


What is the probability that the chain starting from 3 ends at 0? Here the minimal classes

are {0} and {5}. Let f(j) be the probability that the chain starting from j ends at 0. Let

f = (f(0), f(1), . . . , f(5))T . We solve

f = Pf,

with the boundary conditions f(0) = 1, f(5) = 0 (starting from 5, never ends at 0). Then

f(1) = 1
3f(0) + 1

3f(1) + 1
3f(2), i.e. 2f(1) = 1 + f(2). Similarly, we work out the equations for

f(2), f(3), f(4).

2f(1) = 1 + f(2)

2f(2) = f(1) + f(3)

2f(3) = f(2) + f(4)

2f(4) = f(3) + 0.

Solving this we obtain: f = (1, 4
5 ,

3
5 ,

2
5 ,

1
5 , 0). The answer is f(3) = 2

5 .

We give another example whose proof using this conditioning recursive method (the statement

itself has a number of (quick) proofs).

Example 7.10.3 Simple Random Walk on Z. Let ξ be i.i.d. such that P(ξ = ±1) = 1/2, and

define Sn = x +
∑n

i=1 ξ, letting x = 0. Define Ti = inf{n ≥ 0, Sn = i} and we use the notation

Pi(. . . ) = P(. . . |x0 = i). Show that P0(T1 <∞) = 1.

Proof. For k ∈ Z, let

fk := P(T1 <∞|x0 = k), fk ∈ [0, 1].

If x0 = 1, T1 = 0, so f1 = P(T1 <∞|x0 = 1) = 1. Note that unless x0 = 1:

T1 = n =⇒ T1 ◦ θ1 = n− 1.

Firstly, we have

fk = P(T1 ◦ θ1 <∞, x1 = k + 1|x0 = k) + P(T1 ◦ θ1 <∞, x1 = k − 1|x0 = k). (7.42)
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Then for k 6= 1, we have

fk = P(T1 ◦ θ1 <∞|x0 = k, x1 = k + 1)P(x1 = k + 1|x0 = k)

+ P(T1 ◦ θ1 <∞|x0 = k, x1 = k − 1)P(x1 = k − 1|x0 = k)

= Pk+1(T1 <∞)
1

2
+ Pk−1(T1 <∞)

1

2
.

This means that

fk =
1

2
fk+1 +

1

2
fk−1, for k 6= 1,

implying that

fk+2 − fk+1 = fk+1 − fk = · · · = f1 − f0 = 1− f0.

If f0 6= 1, 1 − f1 > 0. Then fk eventually becomes greater than 1 for k large enough, in

contradiction with its definition (7.42). Hence we have f1 = f0 = 1. ( fk eventually becomes

less than 0 for −k sufficiently large and we conclude fk = 1 for all k).

——End of Lecture 15——–

Example: Random walks on finite groups

A very important particular case is that of a random walk on a finite group. Think of card

shuffling: there are only a finite number of possible orders for a deck of card, so this is a Markov

process on a finite set. However, this set has a natural group structure by identifying a deck of

card with an element of the group of permutations and the Markov process respects this group

structure in the following sense. The probability of going from e (the identity) to an element g

of the permutation group is the same as the probability of going from an arbitrary element h to

g · h. This motivates the following definition:

The left translations on G are the maps: h ∈ G 7→ gh ∈ G where g ∈ G.

Definition 7.10.16 Consider a group G and a time homogeneous Markov chain with transition

matrix P on G. We say that the Markov chain is a left-invariant random walk on G if and

only if the left translations preserve the matrix P : i.e. Pgh1,gh2 = Ph1,h2 for any g, h1, h2 ∈ G.

(It is right invariant random walk if Ph1g,h2g = Ph1,h2 for any g, h1, h2 ∈ G.)

It is clear that if the group G happens to be abelian, right-invariant and left-invariant random

walks are the same.

Example 7.10.4 Random walk on Z. Let xn = xn−1 + Yn where Yi are i.i.d.’s with values in

Z. Let P̂ be the probability distribution of Yi. Then

P(xn = j|xn−1 = i) = P(Yn = j − i) = P̂ (j − i).

Then P(xn = j|xn−1 = i) = P(xn = j + k|xn−1 = i+ k). This is an invariant random walk.
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Exercise 7.10.4 The Markov chain is left invariant if and only if there exists a probability

measure P̂ on G such that P(xn+1 = g |xn = h) = P̂ (h−1g). The Markov chain is right

invariant if and only if there exists a probability measure P̂ on G such that P(xn+1 = g |xn =

h) = P̂ (gh−1).

The most common example of a random walk on a finite group is card shuffling. Take a

deck consisting of n cards. Then, the set of all possible states of the deck can be identified in

an obvious way with the symmetric group Sn, i.e. the group of all possible permutations of n

elements. When identifying a permutation with a bijective map from {1, . . . , n} into itself, the

composition law on the group is simply the composition of maps.

7.11 A summary

By a Markov chain or a Markov process we mean a time homogeneous Markov chain with a

transition matrix (THMC) unless otherwise stated.

A state i is recurrent if Pi(Ti < ∞) = 1, it is positive recurrent if EiTi < ∞. The chain is

recurrent or positive recurrent if every state has the property. The following dichotomy hold,

Theorem 7.4.5,

1. j is recurrent iff Pj(xn = j, infinitely often ) = 1.

2. j is transient iff Pj(xn = j, infinitely often ) = 0.

If the chain is irreducible, then either
∑∞

n=1 P
n
ij =∞ for any i, j and every state is recurrent or∑∞

n=1 P
n
ij <∞ for any i, j and every state is transient (see Lemma 7.4.4).

If the time homogeneous Markov chain on a countable state space is irreducible then all states

are simultaneously recurrent and transient (Corollary 7.4.3 ), also all states are simultaneously

positive recurrent or not (Theorems 7.6.5 and 7.6.4).

On a finite state space, the family of transition probabilities P (x, ·) is determined by a

stochastic matrix. Every time homogeneous Markov chain on a finite state space has an invariant

probability measure (Theorem 7.10.7) and for an irreducible chain there exists precisely one

invariant probability measure. Every recurrent state is positive recurrent (Corollary 7.10.8).

See also Lemma 7.10.2 for the existence of the pth moments of the return times for aperiodic

irreducible THMC’s. The set of all invariant probability measures of a stochastic matrix P

consists of all convex linear combinations of the Perron-Frobenius vectors of the restrictions of

P to its recurrent communication classes, see Theorem7.10.9).

On a countable state space, an invariant measure may not have finite mass. If the time homo-

geneous Markov chain has a recurrent state i, we can construct an invariant measure (Theorem
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7.6.1). This measure has finite mass if and only if the site i is positive recurrent. If the chain

is irreducible and recurrent, there is at most one invariant measure (up to a constant multiple,

Theorem 7.6.4). If the chain is irreducible and positive recurrent for one site, then EiTi <∞ for

all sites (and there exists a unique invariant probability measure). For an irreducible chain, the

existence of an invariant probability measure is in fact equivalent to that all states are positively

recurrent (Theorem 7.6.5).

Theorem 7.11.1 1. If P has a recurrent state, it has an invariant measure.

2. If π is an invariant probability measure and if π(j) > 0 then j is recurrent (Theorem

7.4.12).

3. If the chain is irreducible and recurrent, then there exists precisely one invariant measure

(unique up to a multiplication constant). The invariant measure is finite if and only if the

chain is positive recurrent.

4. If P is irreducible with stationary probability measure π, then EiTi <∞ for all i and

π(i) =
1

EiTi
.

5. If the chain is irreducible and has a positive recurrent state, there exists an invariant

probability measure by π. Also,

Ei(number of visits to j before returning to i) =
π(j)

π(i)
.





Chapter 8

Invariant measures in the general

case

In this chapter we study time-homogeneous Markov processes on a complete separable metric

space X .

Definition 8.0.1 A metric space X is called separable if it has a countable dense subset.

Example 8.0.1 • If X is a discrete space, we may use the following distance function

d(x, y) =

{
1, if x 6= y

0, if x = y.

to describe its power set as the set of all open sets. Indeed any subset of X is open, close,

and Borel measurable.

• Rn with its usual metric (The set of points with rational coordinates is a dense subset)

• X a smooth complete finite dimensional Riemannian manifold M (Hausdorff and second

countable).

• The Wiener space C([0, 1]; Rn) with its uniform distance. Also C([0, 1];M) where M is as

above.

• Lp(Rn) for every n and every p ∈ [1,∞) (take functions of the form P (x)e−|x|
2

where P is

a polynomial with rational coefficients).

How do we go about fining the invariant probability measures?

Typically P (x, ·) assigns null measure to singleton sets, the communication classes, very

effective for discrete state space, is not suitable as it is. The same story with the concept of

125
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irreducibility based on communication classes. There are other concepts of irreducibility, eg

assume that Px(TA) > 0 where TA is the first return time to a set A which is not too small. The

size of A can be fro example measured by an auxiliary measure. We cannot cover this material

in these lectures. See the book of Myan and Tweedie.

8.1 Weak convergence

One useful construction for invariant measure is by averaging: For x fixed define:

µn(A) :=
1

n

n∑
k=1

P k(x,A).

If µ has a limit point then this is potentially an invariant measure. What notions of convergence

should one use? For finite state space, a probability measure is identified with a vector in Rn,

so all notions of convergence is equivalent.

Definition 8.1.1 A sequence µn of probability measures on a topological space X is said to

converge weakly to a probability measure µ if

lim
n→∞

∫
X
ϕ(x)µn(dx) =

∫
X
ϕ(x)µ(dx) , (8.1)

for every bounded and continuous function ϕ : X → R.

Note that the speed of the convergence in (8.1) is allowed to depend on ϕ.

Thie following lemma is behind the notion of ‘weak convergence’.

Lemma 8.1.2 [Paratharathy, page 39] Let µ, ν be measures on a metric space X . If for all

bounded real valued uniformly continuous function f : X → R,∫
fdµ =

∫
fdν

then µ = ν.

In fact, the space of probability measures P (X ) can be given a topology, called the weak

topology. Recall topology defines the concept of continuity of functions and convergence.

Remark 8.1.3 Suppose that X is a separable complete metric space. Then the topological

space P (X ) is metrisable as a separable metric space (e.g. with the Prohorov metric). One can

choose this metric such that P (X ) is a separable complete metric space. Also P (X ) is compact

if and only if X is.
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If d is the metric that metrizes P(X ), then µn to µ weakly if and only if d(µn, µ)→ 0. Also,

weak convergence describes the weak topology. so µn → µ means µn → µ in the weak topology.

Example 8.1.1 If {xn} is a sequence of elements converging to a limit x, then the sequence

δxn converges weakly to δx. In this sense the notion of weak convergence is a natural extension

of the notion of convergence on the underlying space X .

We say x is in the support of a measure then any of its neighbourhood (open set containing

x) must have positive measure. It is a theorem that the support of a probability measure on

a separable complete metric space has full measure. Then a measure is a Dirac measure if and

only if there is only a single point in t its support.

If X is a separable complete metric space, a sequence of Dirac measures, δxn , converges weakly

to an measure µ, the limit must be a Dirac measure δx and xn → x. This follows from the fact

that a probability measure µ on a separable complete metric space is not a Dirac measure must

have at least two points, say x1 and x2, in its support. If δxn → µ and µ has two distinct points

x, y in its support, we can choose εn small so that B2εn(y1) and B2εn(y2) are disjoint. We take

bounded continuous function ϕε(x) that equals 1 on Bε(y1) and are supported in B2ε(y1). Then∫
ϕε dδxn = 1Bε(xn)→

∫
ϕε dµ 6= 0 and so xn ∈ Bε(x1). Similarly we can take ψε which equals

1 on Bε(x2) and supported on B2ε(y) and xn ∈ Bε(x2), giving a contradiction.

Example 8.1.2 If X is a discrete state space, any function f : X → R is continuous. Hence

µn → µ weakly if and only if µn(A)→ µ(A) for an subset A of X .

Proposition 8.1.4 Let X = R. Let F (x) = µ((−∞, x]) and Fn(x) = µn((−∞, x]). Then

µn → µ weakly if and only if Fn(x)→ F (x) for all x such that F is continuous at x.

This follows from Portmanteau Theorem.

Example 8.1.3 If Yn are random variables distributed as µn and Y is distributed as µ and

Yn → Y in probability then µn → µ weakly (i.e. Yn converges to Y in distribution). The

converse does not hold, take for example Y = c a deterministic function and P(Yn = ±1
2) = 1

2 .

8.2 Feller and Strong Feller Property

Let P be a transition probability on a space X , we associate to it the operator T acting on finite

signed measures on X by

(Tµ)(A) =

∫
X
P (x,A)µ(dx) .

We also defined an operator T : Bb(X ) → Bb(X ), the space of bounded measurable functions

from X to R, by (
Tf
)
(x) = E

(
f(x1) |x0 = x

)
=

∫
X
f(y)P (x, dy) .
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We also recall the duality:
∫
X fd(Tµ) =

∫
X Tfdµ for any f ∈ Bb and T determines also the

transition probabilities {P (x, ·)}.

A probability measure π is said to be invariant for P if Tπ = π.

Definition 8.2.1 We say that a homogeneous Markov process with transition operator T is

Feller if Tf is continuous whenever f is continuous and bounded. It is strong Feller if Tf is

continuous whenever f is measurable and bounded.

We also extend these terminology to its transition probabilities P and to the transition opera-

tors T .

Any functions on discrete space is therefore continuous, and any time homogeneous Markov

process is a good process: both Feller property Feller and strong Feller property hold.

The statement that T has the Feller property (or equivalently it preserves the space of

bounded continuous functions) holds is equivalent to the statement that P (x, dy) is continuous

in the weak topology, which precisely means for any f bounded and continuous,

lim
n→∞

∫
f(y)P (xn, dy) =

∫
f(y)P (x, dy)

whenever xn → x.

Example 8.2.1 Let x0 ∈ X , set P (x, dy) = δx−x0 . Then Tf(x) =
∫
X f(y)P (x, dy) = f(x− x0)

is Feller.

Example 8.2.2 (Not Feller) Let P (x,A) be a family of transition probabilities on R given

below

P (x, ·) =

{
δ1, if x > 0

δ0, if x ≤ 0.

Then

Tf(x) =

∫
R
f(y)P (x, dy) =

{
f(1) if x > 0

f(0), if x ≤ 0,

and Tf fails to be continuous at 0 for continuous functions f with f(1) 6= f(0).

Example 8.2.3 Let xn be a random walk on R with xn = xn−1 + Yn and Yn are i.i.d. random

variables with probability distribution Γ. Then

Tf(x) = Ef(x+ Y1) =

∫
R
f(x+ y)Γ(dy).

If P(Y = 1) = 1
2 and P(Y = −1) = 1

2 , then Tf(x) = Ef(x+ Y1) = 1
2f(x+ 1) + 1

2f(x− 1). Then

T has Feller property, not strong Feller property.

If Y is standard Gaussian distributed, then Tf(x) = 1√
2π

∫
R f(y)e−

|y−x|2
2 dy has the strong

Feller property. Indeed this follows from properties of Gaussian densities (parabolic PDE theory)

or by properties of convolutions.
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8.3 Weak convergence and Prokhorov’s theorem

The aim of this section is to give a ‘compactness’ theorem that provides us with a very useful

criteria to check whether a given sequence of probability measures has a convergent subsequence.

In order to state this criteria, let us first introduce the notion of ‘tightness’.

By tightness we mean that the measure is tightly packed into a small space, by ‘small’ we

we mean the total mass can be almost packed into a compact set.

Lemma 8.3.1 If X is a complete separable metric space, and µ a probability measure. Then

for every ε > 0 there exists a compact set K ⊂ X such that µ(K) ≥ 1− ε.

Proof. Let {ri} be a countable dense subset of X and denote by B(x, r) the ball of radius r

centred at x. Note that since {rk} is a dense set, one has
⋃
k>0 B(rk, 1/n) = X for every n. Fix

ε > 0 and, for every integer n > 0, denote by Nn the smallest integer such that

µ
( ⋃
k≤Nn

B(rk,
1

n
)
)
≥ 1− ε

2n
.

Since
⋃
k>0 B(rk, 1/n) = X , the number Nn is finite for every n. Define now the set K as

K =
⋂
n≥0

⋃
k≤Nn

B(rk,
1

n
) .

It is clear that µ(K) > 1− ε. Furthermore, K is totally bounded, i.e. for every δ > 0 it can be

covered by a finite number of balls of radius δ (since it can be covered by Nn balls of radius 1/n).

It is a classical result from topology that in complete separable metric spaces, totally bounded

sets have compact closure.

Definition 8.3.2 Let M ⊂ P(X ) be an arbitrary subset of the set of probability measures on

some topological space X . We say that M is (uniformly) tight if, for every ε > 0 there exists

a compact set K ⊂ X such that µ(K) ≥ 1− ε for every µ ∈M.

By Lemma 8.3.1, every finite family of probability measures on a complete separable metric

space is tight. One can show that: if {µn} is a tight sequence of probability measures on a com-

plete separable metric space, then there exists a probability measure µ on X and a subsequence

µnk such that µnk → µ weakly.

Theorem 8.3.3 (Prohorov) Let X be a complete separable metric space. Then a family of

probability measures on X is relatively compact if and only if it is tight.

Exercise 8.3.1 If {µn} ⊂ P (X ) is tight and such that every convergence sub-sequence converges

to the same limit, then the sequence converges.
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Example 8.3.1 LetM be a subset of P(R). Suppose that there exists a non-decreasing function

ϕ : [0,∞)→ [0,∞) such that limx→∞ ϕ(x) =∞ and C = supµ∈M
∫
X ϕ(|x|)µ(dx) <∞, then M

is tight.

Proof. Observe that

µ(|x| ≥ n) =

∫
|x|≥n

dµ =

∫
|x|≥n

ϕ(|x|)
ϕ(|x|)

dµ ≤ 1

ϕ(n)

∫
|x|≥n

ϕ(|x|)dµ

≤ C

ϕ(n)
.

The quantity on the right hand side is the same for all µ ∈ M , it converges to 0 uniform in

µ ∈M , and tightness follows.

Remark 8.3.4 (not examinable) A topological space X is said to be a Polish space, if there

exists a complete metric on X whose metric topology agrees with the topology of X . Since

both ‘relative compact’ and ‘compact sets’ and therefore ‘tightness’ of a family of measures are

topological concepts, Prohorov’s theorem holds If X is a Polish space.

Note that (0, 1) is a Polish space although it is not a complete metric space with respect to

the inherited metric from R. The open sets and therefore the topology of (0, 1) is understood to

be that induced by R. Let ϕ(x) = tan(πx− π
2 ), then %(x, y) = |ϕ(x)− ϕ(y)| defines a complete

metric on (0, 1). Its collection of open balls can be charactrerised with that by the distance

function d(x, y) = |x− y|.

Let µn = δ x
2n

where x is a given point (0, 1). Then {µn} is not tight. However µn, considered

as measures on R, converges weakly to δ0. It is not relatively compact as measures on (0, 1): it

does not have a subsequence with limit a measure on (0, 1).

8.4 Existence of Invariant Measures

The Prohorov theorem allows us to give a very simple criteria for the existence of an invariant

measure for a given Markov process.

Theorem 8.4.1 (Krylov-Bogoliubov) Let P be a Feller transition probability on a com-

plete separable metric space X . If there exists x0 ∈ X such that the sequence of measures

{Pn(x0, · )}n≥0 is tight, then there exists an invariant probability measure for P .

Proof. Fix x0 as given by the assumptions and let µN be the sequence of probability measures

defined by

µN (A) =
1

N

N∑
n=1

Pn(x0, A) . (8.2)
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Since our assumption immediately implies that {µN}N≥1 is tight, there exists at least one

accumulation point π and a sequence nk with nk →∞ such that µnk → π weakly.

To check Tπ = π, by Lemma 8.1.2, we only need to show that
∫
ϕd(Tπ) =

∫
ϕdπ for any

ϕ ∈ Cb(X ). Since T is Feller, Tϕ is a continuous function, using

TPn(x0, ·) =

∫
X
P (y, ·)Pn(x0, dy) = Pn+1(x0, ·),

we see that∫
X
ϕd(Tπ) =

∫
Tϕdπ = lim

k→∞

∫
Tϕdµnk

= lim
k→∞

1

nk

nk∑
n=1

∫
TϕPn(x0, dy) = lim

k→∞

1

nk

nk∑
n=1

∫
ϕPn+1(x0, dy)

= lim
k→∞

∫
X
ϕ

(
dµnk +

1

nk
Pnk+1(x0, dy)− 1

nk
P (x0, dy)

)
=

∫
ϕdπ + lim

k→∞

1

nk

∫
X
ϕPnk+1(x0, dy)− lim

k→∞

1

nk

∫
X
ϕP (x0, dy) =

∫
ϕdπ.

We used ϕ is bounded in the last step. Since ϕ was also arbitrary, this in turn implies that

Tπ = π, i.e. that π is an invariant measure for our system.

Krylov-Bogoliubov Theorem holds on Polish spaces.

Example 8.4.1 Consider the Markov process defined on (0, 1) by the recursion relation xn+1 =

xn/2. Note also Tϕ(x) = E(ϕ(x1)|x0 = x) = ϕ(x2 ), P (x, dy) = δx
2
. Note that the law of {xn}

is not tight. Since xn+1 will eventually does not charge any Borel subset of (0, 1), the Markov

chain does not have an invariant measure on the open interval (0, 1), even though it defines a

perfectly valid Feller semigroup on (0, 1) equipped with the topology inherited from R.

As an immediate consequence of Theorem 8.4.1, we have that

Corollary 8.4.2 If the space X is compact, then every Feller semigroup on X has an invariant

probability measure.

Proof. On a compact space, every family of probability measures is tight.

Example 8.4.2 Let X = {1, . . . , N}, then (by Corollary 8.4.2) any Markov chain on X has an

invariant probability measure

Example 8.4.3 Let Φ : X × Y → X be continuous and bounded. Define the Markov chain by

xn+1 = Φ(xn, ξn+1), with µ ∼ ξk iid random variables and {x0, ξk, k ≥ 1} independent. Then if

f ∈ Cb(X ),

Tf(x) = E[f(Φ(x, ξn+1))] =

∫
f ◦ Φ(x, y)µ(dy),
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then Tf is continuous. Hence (xn) is Feller and has an invariant probability measure. An

example is xn+1 = sin(xn + ξn+1).

Example 8.4.4 Consider (xn) a Markov chain on Rn with initial position x0. Assume P

(equivalently T ) is Feller, then there exists an invariant probability measure if any of the following

holds:

1) supn≥0 E[|xn|p] <∞ for some p > 0.

2) supn≥0 E| log(|xn|+ 1)| <∞.

Proof. In these settings we have Pn(x0, ·) = L(xn), and tightness for 2) follows from below1

Pn(x0, (BM )c) = P(|xn| > M) ≤ sup
n≥0

E log(|xn|+ 1)

log(M + 1)
→ 0, as M →∞,

where BM is the closed ball of radius M centred at 0. The proof for 1) is similar.

Example 8.4.5 (Tightness) Suppose {ξn} are iid and independent of x0, with E|x0| <∞ and

Markov chain xn+1 = 1
2xn + ξn+1. Assume also E|ξk| = a < 1. The chain is Feller (check as

in Example 8.4.4). The following arguments shows that the probability distribution of {xn} is

tight. For all n ≥ 1

E|xn+1| ≤
1

2
E|xn|+ E|ξn+1| ≤

1

2

(
1

2
E|xn−1|+ a

)
+ a

= a+
1

2
a+

1

4
(|xn−2|+ a)

≤ a+
1

2
a+

1

4
a+ · · ·+ 1

2n+1
a+ E|x0|

≤ 2a+ E|x0|.

Hence supn≥0 E|xn| <∞ and the system has an invariant probability measure. We remark since

we only need to show {Pn(x0, ·)} is tight for some x0, we can simply start the chain from a fixed

point.

The Lyapunov test function method allows us to use this reasoning for more general systems.

8.4.1 Lyapunov Function test

One simple way of checking that the tightness condition of the Krylov-Bogoliubov theorem

holds is to find a so-called Lyapunov function for the system. A Lyapunov function is allowed

1Using Markov’s inequality with non-negative monotone function u 7→ log(u+ 1).
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to take thev value +∞. We clarify what does it mean to integrate a function that might take

the value +∞. Let X0 = {x : V (x) < ∞}. If µ is a measure on X with µ(X0) = 1, we

define
∫
X V dµ =

∫
X0
V dµ, otherwise we set

∫
X V dµ = ∞. In particular the assumption that

TV (x) ≤ γV (x) + C implies that P (x,X0) = 1 for every x with V (x) <∞.

Lemma 8.4.3 Let P be a transition function on X and let V : X → R+ ∪ {∞} be a Borel

measurable function. Suppose there exist a positive constant γ ∈ (0, 1) and a constant C > 0

such that

TV (x) ≤ γV (x) + C ,

for every x such that V (x) 6=∞. Then

TnV (x) ≤ γnV (x) +
C

1− γ
. (8.3)

Proof. This is a simple consequence of the Chapman-Kolmogorov equations:

TnV (x) =

∫
X
V (y)Pn(x, dy) =

∫
X
TV (y)Pn−1(x, dy) =

∫
X

∫
X
V (y)P (z, dy)Pn−1(x, dz)

≤ C + γ

∫
X
V (z)Pn−1(x, dz) ≤ . . .

≤ C + Cγ + . . .+ Cγn + γnV (x) ≤ γnV (x) +
C

1− γ
,

completing the proof.

Typically, V (x) = |x|p or V (x) = log |x|, etc... These allow us to control E|xn|p etc. Note

the following:

• If V is bounded EV (xn) <∞ provides no information on tightness of the law of {xn}.
To avoid this assume V −1([0, a]) := {y : V (y) ≤ a} is compact.

• We can allow V = +∞ where xn does not visit. But V should not be +∞ everywhere, i.e.

V −1(R+) 6= φ.

Definition 8.4.4 Let X be a complete separable metric space and let P be a transition proba-

bility on X . A Borel measurable function V : X → R+ ∪ {∞} is called a Lyapunov function

for P if it satisfies the following conditions:

• V −1(R+) 6= φ.

• For every a ∈ R+, the set {y : V (y) ≤ a} is compact.

• There exist a positive constant γ < 1 and a constant C such that

TV (x) =

∫
X
V (y)P (x, dy) ≤ γV (x) + C ,

for every x such that V (x) 6=∞.
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With this definition at hand, it is now easy to prove the following results.

Theorem 8.4.5 (Lyapunov function test) If a transition probability P is Feller and admits

a Lyapunov function, then it has an invariant probability measure.

Proof. Let x0 ∈ X be any point such that V (x0) 6= ∞, we show that the sequence of measures

{Pn(x0, · )} is tight. For every a > 0, let Ka = {y |V (y) ≤ a}, a compact set. By the lemma

above,

TnV (x0) =

∫
X
V Pn(x, dy) ≤ γnV (x) +

C

1− γ
.

Tchebycheff’s inequality shows that

Pn(x0, (Ka)
c) =

∫
{V (y)>a}

Pn(x0, dy) ≤
∫
{V (y)>a}

V (y)

a
Pn(x0, dy) ≤ 1

a
TnV (x0)

≤ 1

a
(V (x0) +

C

1− γ
).

We have used Lemma 8.4.3 and the fact that γ < 1. The results follows from convergence of

the right hand side, as a→∞, with rate uniform in n. (More precisely, for every ε > 0 we can

now choose a ≥ 1
ε

(
V (x0) + C

1−γ

)
, then Pn(x,Ka) ≥ 1 − ε for every n ≥ 0.) We can now use

Krylov-Bogoliubov theorem to conclude.

The proof the previous theorem suggests that a Lyapunov function V for T allows us to

deduce information on its invariant measures. E.g. if V (x) = |x|2 we expect to deduce that π

has second moment and the second moment bound C/(1− γ), where C and γ are the constants

appearing in (8.3). This is indeed the case, as shown by the following proposition:

Proposition 8.4.6 Let P be a transition probability on X and let V : X → R+ be a measurable

function such that there exist constants γ ∈ (0, 1) and C ≥ 0 with∫
X
V (y)P (x, dy) ≤ γV (x) + C .

Then, every invariant measure π for P satisfies∫
X
V (x)π(dx) ≤ C

1− γ
.

Proof. Let M ≥ 0 be an arbitrary constant. As a shorthand, we will use the notation a ∧ b to

denote the minimum between two numbers a and b. Let VM = V ∧M . For every n ≥ 0, one

then has the following chain of inequalities:∫
X
VM (x)π(dx) =

∫
X
VM (x)

(
Tnπ

)
(dx) =

∫
X
TnVM (x)π(dx)
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≤
∫
X

(γnVM (x) +
C

1− γ
)π(dx)

We have used Jensen’s inequality. Since the function on the right hand side is bounded by M ,

we can apply the Lebesgue dominated convergence theorem. It yields the bound∫
X

(
V (x) ∧M

)
π(dx) ≤ C

1− γ
,

which holds uniformly in M , and the result follows.

We complete this section with a couple of inequalities which can be handy for applying Lyapunov

function methods.

Lemma 8.4.7 For any p ≥ 1 and any δ > 0 there exists a constant K > 1 such that

|1 + x|p ≤ K|x|p + 1 + δ.

Note that if x ≤ 0, |x+ 1|p ≤ 1 + |x|p.

Proof. This is clear if x < 0. For p an integer, this can also be obtained by apply Young’s

inequality to terms |x|p′ |y|p−p′ in the expansion of |x+ y|p.

Now we assume x ≥ 0. Let f(x) = |1 + x|p. Let g(x) = K|x|p + 1 + δ. Note that g(0) >

f(0). If f(x) ≥ g(x) for some x, then by the intermediate value theorem there exists a point

where they have equal value. Let x0 be the first point they are equal. Then x0 > 0. Choose

K =
(
| 1
|x0|p + 1|p

)
. Then f(x) = |x|p

(
| 1
|x|p + 1|p

)
≤ K|x|p for any x ≥ x0.

Young’s inequality: for any α, β > 0 with 1
α + 1

β = 1,

ab ≤ (εa)α

α
+

bβ

βεβ
.

8.4.2 Application to a random dynamical system

In this section, let (xn) be a Markov process defined by a recursion relation of the type

xn+1 = F (xn, ξn) , (8.4)

for {ξn} a sequence of independent and identically distributed random variables taking values

in a measurable space Y, and all independent of x0, and F : X × Y → X a Borel measurable

function. Then for any V ∈ Bb(X),

TV (x) = E[V (F (x, ξn))].

An effective criteria for the transition probabilities to be Feller is as follows:
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Theorem 8.4.8 Let (xn) be a Markov process defined by a recursion relation of the type

xn+1 = F (xn, ξn) ,

for {ξn} a sequence of i.i.d. random variables taking values in a measurable space Y and F : X ×
Y → X . If the function F (·, ξn) : X → X is continuous for almost every realisation of ξ (If A is

the set of y such that x 7→ F (x, y) is continuous, then the property that P(ξn ∈ A) = 1 does not

depend on n.), then the corresponding transition semigroup is Feller.

Proof. Denote by P̂ the law of ξn on Y and by ϕ : X → X an arbitrary continuous bounded

function. It follows from the definition of the transition semigroup T that

(
Tϕ
)
(x) = E

(
ϕ(xn+1) |xn = x

)
= Eϕ(F (x, ξn)) =

∫
Y
ϕ
(
F (x, y)

)
P̂(dy) .

Let now {zn} be a sequence of elements in X converging to z. Lebesgue’s dominated convergence

theorem shows that

lim
n→∞

(
Tϕ
)
(zn) = lim

n→∞

∫
Y
ϕ
(
F (zn, y)

)
P̂(dy) =

∫
Y

lim
n→∞

ϕ
(
F (zn, y)

)
P̂(dy)

=

∫
Y
ϕ
(
F (z, y)

)
P̂(dy) =

(
Tϕ
)
(z) ,

which implies that Tϕ is continuous and therefore that T is Feller.

If F is continuous in the first variable for each y, then the Markov process is Feller.

Theorem 8.4.9 Suppose that the function F (·, ξn) : X → X is continuous for almost every

realisation of ξn. If, furthermore, there exists a Borel measurable function V : X → R with

compact sub-level sets and constants γ ∈ (0, 1) and C ≥ 0 such that∫
Y
V
(
F (x, y)

)
P̂(dy) ≤ γV (x) + C , ∀x ∈ X ,

where P̂ is the distribution of ξn, then the process x has at least one invariant probability measure.

Proof. Indeed,

P (x,A) = E(x1 ∈ A|x0 = x) = E(F (x0, ξ0) ∈ A|x0 = x) =

∫
1A(F (x, y))P̂ (dy).

Then P is Feller follows from Theorem 8.4.8. Then the left hand side of the given inequality

is TV and V is a Lyapunov function. The existence of an invariant probability measure now

follows from the Lyapunov function test.
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8.5 Uniqueness of the invariant measure

In this section, we give a very simple criteria for the uniqueness of the invariant measure, due to

deterministic contraction. We first review some general results regarding coupling of probability

measures and criterion to establish uniqueness

8.5.1 Properties of couplings

Let π1 and π2 be two probability measures on metric space (X , d). Let µ a coupling of π1 and

π2, i.e. µ ∈ P(X 2) with (proj1)∗µ = π1 and (proj2)∗µ = π2. Where (proji) : X × X → X0 are

the projections to first and second component respectively (i= 1, 2).

Example 8.5.1 Let π1 = N(0, 1) and π2 = N(0, 1). Let X,Y be independent N(0, 1) random

variables. Then the joint probability distribution of (aX + bY, cX + dY ) where a2 + b2 = 1,

c2 + d2 = 1 is a coupling of π1 and π2. This is a two dimensional Gaussian distribution with

covariance matrix

(
1 ac+ bd

ac+ bd 1

)
.

Lemma 8.5.1 Define ∆ ⊂ X × X to be the diagonal ∆ = {(x, x) : x ∈ X}. If there exists a

coupling µ of π1 and π2 such that µ(∆) = 1, then π1 = π2. In particular π1 = π2 if∫
X×X

1 ∧ d(x, y)µ(dx, dy) = 0 (8.5)

Proof. Let A ⊂ X be a Borel measurable set. Then using assumptions

π1(A) = µ(A×X ) = µ((A×X ) ∩∆)

= µ((X ×A) ∩∆) = µ(X ×A) = π2(A).

Hence π1 = π2.

Also note that {(x, y) : 1 ∧ d(x, y) = 0} = ∆. Then∫
X×X

1 ∧ d(x, y)µ(dx, dy) = 0 =⇒ µ(∆) = µ({(x, y) : 1 ∧ d(x, y) = 0}) = 1.

Hence (8.5) implies µ(∆) = 1 and then π1 = π2 by above.

Lemma 8.5.2 Let {µn} be a family of couplings of π1, π2 ∈∈ P(X ), then {µn} is tight.

Proof. Since π1, π2 are probability measures, for any ε > 0 there exists compact sets K1,K2 ⊂ X
such that

π1(K1) > 1− ε

2
, π2(K2) > 1− ε

2
.
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Then we infer tightness of {µn} since for any n:

µn(X 2 \K1 ×K2) ≤ µn((X \K1)×X ) + µn(X × (X \K2))

= π1(KC
1 ) + π2(KC

2 ) < ε.

Lemma 8.5.3 If µn is a sequence of measures on X converging weakly to a measure µ, then

for any continuous map ϕ : X → Y, ϕ∗µn converges to ϕ∗µ.

Proof. Let f : Y → R be bounded continuous, since f ◦ ϕ is bounded continuous, then∫
Y
f dϕ∗µn =

∫
X
fϕdµn →

∫
X
fϕdµ =

∫
Y
fdϕ∗µ,

so ϕ∗µn → ϕ∗µ.

Lemma 8.5.4 If {µn} is a family of couplings of π1, π2 ∈∈ P(X ), then so is any of its accu-

mulation points.

Proof. This due to the fact that (proji) is continuous and (Proji)∗µ=π. Suppose limn→∞ µn = µ

(weakly), then by Lemma 8.5.3, for i = 1, 2 and any f : X → R bounded continuous,∫
X
f d((proji)∗µ) =

∫
X
f dπi.

Since measures are determined by bounded continuous functions, we deduce

(proji)∗µ = πi,

concluding that µ is a coupling of π1, π2.

8.5.2 Uniqueness due to deterministic contraction

Consider now the random dynamical system of previous section. Let xn+1 = F (xn, ξn+1) be a

Markov chain, where {ξi}i≥1 are i.i.d random variables. Then we have the following uniqueness

criterion.

In this section, we give a very simple criteria for the uniqueness of the invariant measure,

due to deterministic contraction.

Theorem 8.5.5 If there exists a constant γ ∈ (0, 1) such that

Ed
(
F (x, ξ1), F (y, ξ1)

)
≤ γd(x, y) ∀x, y ∈ X , (8.6)

then the process (8.4) has at most one invariant probability measure.
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Proof. Let π1 and π2 be any two invariant probability measures for (8.4). Let x0 and y0 be

two independent X -valued random variables, independent of {ξi} and with laws L(x0) = π1 and

L(y0) = π2. Then define xn and yn as follows:

x1 = F (x0, ξ1), xn+1 = F (xn, ξn+1), n ≥ 1;

y1 = F (y0, ξ1), yn+1 = F (yn, ξn+1), n ≥ 1.

Then L(xn) = π1, L(yn) = π2 for all n ≥ 0, and µn := L((xn, yn)) is a coupling of π1 and

π2. By Lemma 8.5.2 and 8.5.4, and Prohorov’s Theorem 8.3.3, there exists a weakly convergent

subsequence µnk , whose limit µ is a coupling of π1 and π2. If

lim
k→∞

∫
X

1 ∧ d(x, y) dµnk = 0, (8.7)

so that, by the boundedness and the continuity of 1 ∧ d(·, ·),∫
X

1 ∧ d(x, y) dµ = 0.

Then we deduce π1 = π2 by Lemma 8.5.1.

Therefore it remains to show (8.7) to conclude the proof, this is proved in the next Lemma.

Definition 8.5.6 We say that (xn, yn) is a synchronized coupling if x0, y0 are independent, and

xn+1 = F (xn, ξn+1) and yn+1 = F (yn, ξn+1) are defined by iteration (with the same noise ξn).

The following lemma shows that the synchronised coupling (xn, yn) having its mass concentrate

more and more on the diagonal.

Lemma 8.5.7 Let µn := L((xn, yn)) be a synchronized coupling. Assume the conditions of

Theorem 8.5.5, then,

lim
n→∞

E(1 ∧ d(xn, yn)) = lim
n→∞

∫
X

1 ∧ d(x, y) dµn = 0.

Proof. Note that contraction assumption is about fixed starting point. Here we do not impose

integrability of d(x0, y0), nor on d(xn, yn). This means we have to tread carefully, and hence the

introduction of 1 ∧ d. Let c > 0. Since ϕ(t) = 1 ∧ ct is concave we can use conditional Jensen’s

inequality and the Markov property to derive the following

E
(
1 ∧ c d(xn, yn)

)
≤ E E

(
ϕ ◦ d

(
xn, yn

)
|xn−1, yn−1

)
≤ E ϕ

(
E
(
d
(
xn, yn

)
|xn−1, yn−1

) )
.

Using xn = F (xn−1, ξn), yn = F (yn−1, ξn), by independence of ξn and (xn−1, yn−1),

E
(
d
(
xn, yn

)
|xn−1, yn−1

)
= E

(
d
(
F (x, ξn), F (y, ξn)

)
x=xn−1,y=yn−1

≤ E
(
γd(xn−1, yn−1)).
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where the inequality is nothing but (8.6) We have the inequality for any a > 0, and any n,

E
(
1 ∧ c d(xn, yn)

)
≤ E ϕ

(
E
(
d(xn−1, yn−1)

) )
= E

(
1 ∧ cγ d(xn−1, yn−1)

)
.

By iteration,

E(1 ∧ d(xn, yn)) ≤ E
(
1 ∧ cγn d(x0, y0)

)
.

Note now that 1 ∧ γnkd converges pointwise to 0 and is bounded by 1, so that Lebesgue’s

dominated convergence theorem yields

E(1 ∧ d(xn, yn)) −→ 0,

proving the Lemma.

8.6 Uniqueness and minorisation

In this section, we give another simple criteria for the uniqueness of the invariant measure of a

Markov transition operator which is based on completely different mechanisms from the previous

section. The result presented in the previous section only used the contractive properties of the

map F in order to prove uniqueness. This was very much in the spirit of the Banach fixed point

theorem and can be viewed as a purely ‘deterministic’ effect. The criteria given in this section

is much more probabilistic in nature and can be viewed as a strong form of irreducibility.

The criteria in this section will also be based on Banach’s fixed point theorem, but this time

in the space of probability measures. The ‘right’ distance between probability measures that

makes it work is the total variation distance as introduced at Definition 7.7.13 in Section

7.7.3.

8.6.1 Properties of the Total Variation

In this subsection we review some definitions and useful properties in sight of the main Theorem

8.6.12. Recall the following

Definition 8.6.1 The total variation distance between two probability measures µ, ν on Ω is

‖µ− ν‖TV = 2 sup
A
|µ(A)− ν(A)|.

where the supremum runs over all measurable subsets .

Lemma 8.6.2 (Duality Formulation)

‖µ− ν‖TV = sup
f∈Bb(X )

‖f‖∞=1

∣∣∣∫
X
f(x)µ(dx)−

∫
X
f(x) ν(dx)

∣∣∣.
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Proof. By the Jordan decomposition theorem,

µ− ν = (µ− ν)+ − (µ− ν)+

where we can assume that there exists a measurable set B such that (µ − ν)+(B) = 1 and

(µ− ν)−(B1) = 1. Let g = 1B − 1Bc , then fro any measurable function f bounded by 1, Thus

sup
f∈Bb(X ).‖f‖∞=1

∣∣∣∫
X
f(x) (µ−ν)+(dx)−

∫
X
f(x) (µ−ν)−(dx)

∣∣∣ ≤ ∣∣∣ ∫
X
g(x) (µ−ν)(dx)

∣∣∣ = 2(µ(B)−ν(B).

Remark 8.6.3 (1) It is also a fact that under very mild conditions on X (being a complete

separable metric space is more than enough), (10.6) is the same as the seemingly weaker

norm,

‖µ− ν‖TV = sup
f∈Cb(X )

‖f‖∞=1

∣∣∣∫
X
f(x)µ(dx)−

∫
X
f(x) ν(dx)

∣∣∣ , (8.8)

where the supremum only runs over continuous bounded functions.

(2) It is also standard to define the total variation distance to be 1
2 of our total variation

distance, i.e. ‖µ− ν‖TV = supA⊂X |µ(A)− ν(A)|. Note also,

sup
f∈Cb(X )

‖f‖∞=1

∣∣∣∫
X
f(x)µ(dx)−

∫
X
f(x) ν(dx)

∣∣∣ =
1

2
sup

f∈Cb(X )

Oso(f)=1

∣∣∣∫
X
f(x)µ(dx)−

∫
X
f(x) ν(dx)

∣∣∣,
where Oso(f) = sup(f)− inf(f).

Another equivalent definition for the total variation is as follows, this will be the one we use

in the formulation. If µ and ν are two positive measures, we use µ << η to indicate that µ is

absolutely continuous with respect to ν.

Definition 8.6.4 Given two (positive) measures µ and ν on a measurable space Ω. Let η be a

(positive) measure such that µ << η and ν << η, define

‖µ− ν‖TV =

∫
Ω

∣∣∣∣dµdη − dν

dη

∣∣∣∣ dη . (8.9)

(Where we denote by dµ
dη and dν

dη their Radon-Nikodym derivatives with respect to η.)

Remark 8.6.5

1. Given two positive measures µ and ν on a measurable space Ω, there always exists η such

that µ << η and ν << η. For example, it is easy to check that both µ and ν are absolutely
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continuous with respect to µ+ ν.

2. The definition (8.9) is independent of the choice of η. In fact, since

dµ

dη
=

dµ

d(µ+ ν)

d(µ+ ν)

dη
,

dν

dη
=

dν

d(µ+ ν)

d(µ+ ν)

dη
,

then ∫
|dν
dη
− dµ

dη
|dη =

∫
d(µ+ ν)

dη

∣∣∣∣ dν

d(µ+ ν)
− dµ

d(µ+ ν)

∣∣∣∣dη
=

∫ ∣∣∣∣ dν

d(µ+ ν)
− dµ

d(µ+ ν)

∣∣∣∣d(µ+ ν).

Hence we can simply define:

‖µ− ν‖TV =

∫
Ω

∣∣∣∣ dν

d(µ+ ν)
− dµ

d(µ+ ν)

∣∣∣∣d(µ+ ν). (8.10)

Remark 8.6.6 Definition (8.9) means that the total variation distance between µ and ν is given

by the L1(η) norm of the corresponding Radon-Nikodym derivatives.

Example 8.6.1 Consider µ, ν measures on R that have densities w.r.t. the Lebesgue measure,

i.e. dµ = fdx and dν = gdx. Then

‖µ− ν‖TV =

∫
R
|f − g|dx = ‖f − g‖L1(R).

Since, for any two positive numbers, one has |x− y| = x+ y − 2 min{x, y}, then we have∣∣∣∣dµdη − dν

dη

∣∣∣∣ =
dµ

dη
+
dµ

dη
− 2

(
dµ

dη
∧ dν
dη

)
. (8.11)

Notation. If µ and ν are two positive measures, we denote by µ ∧ ν the measure obtained by

(
µ ∧ ν

)
(A) =

∫
A

min

{
dµ

d(µ+ ν)
,

dν

d(µ+ ν)

}
d(µ+ ν).

Lemma 8.6.7 Assuming µ, ν ∈ P(Ω), we have a useful identity:

‖µ− ν‖TV = 2
(
1− µ ∧ ν(Ω)

)
. (8.12)

Proof. By plugging (8.11) into the definition (8.10), we immediately see that

‖µ− ν‖TV = µ(Ω) + ν(Ω)− 2µ ∧ ν(Ω) = 2
(
1− µ ∧ ν(Ω)

)
,

as required.
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Exercise 8.6.1 Show that if η is an positive measure on Ω such that µ� η and ν � η, then

(
µ ∧ ν

)
(A) =

∫
A

min

{
dµ

dη
,
dν

dη

}
dη .

Lemma 8.6.8 The space of probability measures P(X ) endowed with the total variation distance

‖ · ‖TV is complete.

Proof. Let µn ∈ P(X ) be a sequence of probability measures that is Cauchy in the total variation

distance. Let η be defined by η =
∑∞

n=1
1

2nµn. Then µn << η for each n. By (8.9), the

total variation distance is equal to the L1 distance between the corresponding Radon-Nikodym

derivatives:

‖µn − µm‖TV =

∫
X

∣∣∣∣dµndη − dµm
dη

∣∣∣∣dη = ‖dµn
dη
− dµm

dη
‖L1(η).

Then {µn} is Cauchy in TV if and only if {dµndη } is a Cauchy sequence in L1(η). But L1(X , η)

is complete and so dµn
dη

L1

−→ f̄ : X → R+ (with f̄ ≥ 0 a function with unit L1-norm). Then

µn → µ̄ ∈ P(X ) in total variation, where µ̄ is given by µ̄(A) =
∫
A f̄dη.

8.6.2 Uniqueness by minorisation

Lemma 8.6.9 Let µ, ν be two probability measures on X . Let µ̄ and ν̄ be defined as follows

µ̄ =
µ− µ ∧ ν

1
2‖µ− ν‖TV

, ν̄ =
ν − µ ∧ ν

1
2‖µ− ν‖TV

. (8.13)

Then µ̄ and ν̄ are probability measures and the following equality holds

µ− ν =
1

2
‖µ− ν‖TV(µ̄− ν̄). (8.14)

Proof. By Lemma 8.6.7 (with Ω = X ) we have

1

2
‖µ− ν‖TV = 1− (µ ∧ ν)(X ) = (µ− µ ∧ ν)(X ).

Hence µ̄ and ν̄ are probability measures. The identity is obvious.

Lemma 8.6.10 Let µ, ν be two probability measures on X and T a transition operator. Then

‖Tµ− Tν‖TV =
1

2
‖µ− ν‖TV · ‖T µ̄− T ν̄‖TV (8.15)

≤ ‖µ− ν‖TV.
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Proof. Applying the operator T to (8.14) we have

Tµ− Tν =
1

2
‖µ− ν‖TV(T µ̄− T ν̄).

Then (8.15) follows, noting that ‖T µ̄− T ν̄‖TV ≤ 2.

Definition 8.6.11 Let η ∈ P(X ). We say transition probability P = (P (x, ·)) is minorized by

η if there exists a number α > 0 such that

P (x, ·) ≥ αη, ∀x ∈ X .

A family of transition probabilities for which the above condition holds is also said to satisfy

the Doeblin’s Condition.)

Note. For a finite state chain this means

P (i, j) ≥ αη(j), ∀i, j ∈ X . (8.16)

For example, if we take η = (0, . . . , 1, . . . 0) = δj0 , where every entry but the jth vanishes, then

(8.16) ⇔ P (i, j0) ≥ α for all i. This is equivalent to having the j0-th column of P bounded

below by a(1, 1, . . . , 1)T . We will show a convergence theorem in the total variation distance (

cf. Proposition 7.10.1, Theorem 7.10.10, Theorem 7.7.17. ).

We are now in a position to formulate the criteria announced at the beginning of this section.

Theorem 8.6.12 Let P be a transition probability on a space X . Assume that P is minorized

by a probability measure η on X , so there exists α > 0 such that P (x, · ) ≥ αη for every x ∈ X .

Then

(1) P has a unique invariant probability measure π.

(2) Furthermore for any µ, ν ∈ P (X ),

‖Tn+1µ− Tn+1ν‖TV ≤ (1− α)n ‖µ− ν‖TV.

Proof. For any measure m ∈ P (X ),

Tm =

∫
X
P (x, ·)dm ≥ αη,

it follows that Tm− αη is a positive measure with total mass (Tm− αη)(X ) = 1− α. Thus,

‖Tm− Tm̄‖TV ≤ (1− α)

∥∥∥∥Tm− αη1− α
− Tm̄− αη

1− α

∥∥∥∥
TV

≤ 2(1− α).
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In sight of the equality in (8.15), this implies (using m = µ̄, m̄ = ν̄)

‖Tµ− Tν‖TV =
1

2
‖µ− ν‖TV‖T µ̄− T ν̄‖TV ≤ (1− α)‖µ− ν‖TV.

Hence T is a strict contraction, By Banach’s fixed point theorem on (P(X ), ‖ · ‖TV) we have

that µ 7→ Tµ has a unique fixed point. Finally,

‖Tn+1µ− Tn+1ν‖TV ≤ (1− α)n‖µ− ν‖TV,

by iteration.

Taking ν to be an invariant measure, so Tnπ = π, the following lemma follows immediately:

Corollary 8.6.13 Assume the conditions of Theorem 8.6.12. Let µ be any probability measure,

and π the unique invariant probability measure. Then

‖Tnµ− π‖TV ≤ (1− α)n‖µ− π‖TV .

Compare the results with Theorem 7.10.10 in Section 7.10.4. The minorisation assumption

can be weakened to hold for some integer n0.

Exercise 8.6.2 Assume there exists n0, α ∈ (0, 1) and η ∈ P(X ) such that

Pn0(x, · ) ≥ αη, ∀x ∈ X0.

Show there exists a unique invariant probability measure π and there exists a ∈ (0, 1) such that

‖Tnµ− Tnν‖TV ≤ an‖µ− ν‖TV.

The proof is almost identical to the earlier theorem. For any m ∈ P (X ),

Tn0m =

∫
X
Pn0(x, ·)dµ ≥ αη.

Write

Tn0m = αη + (1− α)
Tn0m− αη

1− α
.

Observe that m̄ := Tn0m−αη
1−α is a probability measure. (Thus any two probability measures, becomes

non-singular after an evolution of time n0.) Apply Lemma 8.6.10, and use the notation there, we obtain

‖Tn0µ− Tn0ν‖TV =
1

2
‖µ− ν‖TV · ‖Tn0 µ̄− Tn0 ν̄‖TV .

= (1− α)‖µ− ν‖TV ·
1

2

∥∥∥∥Tn0 µ̄− αη
1− α

− Tn0 ν̄ − αη
1− α

∥∥∥∥
TV
≤ (1− α)‖µ− ν‖TV.
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Thus Tn0 is a contraction. If n,m ≥ n0k where k ∈ N, we use the property that T does not increase the

total variation norm (Lemma 8.6.10),

‖Tnµ− Tmν|TV ≤ ‖Tn0kTn−n0kµ− Tn0kTm−n0kν‖TV

≤ (1− α)k‖Tn−n0kµ− Tn−n0kν‖TV ≤ 2(1− α)k ,

So Tnµ is a Cauchy sequence and converges to a probability measure π, by the completeness of P(X ).

Since T is continuous, we see that π is an invariant measure. The uniqueness follows from the contraction.

Example 8.6.2 Let {ξn} be independent identically distributed real valued random variables

with transition probabilities probability distribution

Γ(A) =
1√
2π

∫
A
e−

(y−g(x))2
2 dy, ∀ A ∈ B(R).

where

g(x) = 4 cos(x),

so

Tf(x) =
1√
2π

∫
R
f(y)e−

(y−g(x))2
2 dy.

Then the minorisation condition is satisfied. Take e−
(y−g(x))2

2 ≥ p(y) := e−
|y+4|2

2 for y > 4, this is

e−
|y+4|2

2 and for y < −4 it bounded from below by e−
|y−4|2

2 , both are integrable in y. Let us define

p(y) = infx e
− (y−g(x))2

2 for y ∈ [−4, 4], as above for |y| > 4. Let η be the probability measure

with density cp for a normalising constant c. Then the minorisation condition is satisfied.

Exercise 8.6.3 Is the family of probability measures c sin(x + y)2dy on [0, 1] where c is a

normalising constant on [0, 1] minorised by the δ measure at 1
2? Here x runs through [0, 1].

8.6.3 Strong Feller

Definition 8.6.14 Let X be a separable metric space. Then for any probability measure µ ∈
P(X ), there exists a closed set A such that A is the smallest closed subset of full measure. This

is the support of µ.

Lemma 8.6.15 The support of a measure on X is the set of points with the property that any

open set containing it has positive measure, i.e. supp(µ) = {x ∈ X : µ(B(x, ε)) > 0,∀ε > 0}.

Example 8.6.3 (Measures, support and mutual singularity)

1. Consider µ =
∑n

i=1 δxi , then supp(µ) = {x1, . . . , xn}.
2. If µ = N(0, 1) is a standard normal random variable on R, then supp(µ) = R.

3. If µ = 1[0,1](x)dx+ 1(2,3](x)dx, then supp(µ) = [0, 1] ∪ [2, 3].
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4. Now consider µ = δ0 and ν = 1(0,1]dx. Then µ and ν are mutually singular, since ν((0, 1]) = 1

and δ0((0, 1]) = 0. On the other hand

supp(µ) ∩ supp(ν) = {0} ∩ [0, 1] = {0} 6= φ.

Even if µ and ν are mutually singular, their supports are not disjoint.

Theorem 8.6.16 Let µ, ν ∈ P(X ) be mutually singular invariant probability measures for a

transition operator T . Suppose T has the Strong Feller property. Then

supp(µ) ∩ supp(ν) = φ.

Proof. By assumption (µ ⊥ ν) there exists F ⊂ X Borel measurable such that µ(F ) = 1 and

ν(F ) = 0. Let ϕ := 1F . Then Tϕ is continuous by the Strong Feller property, and Tϕ ∈ [0, 1].

Since ν(F ) = 0, ϕ = 1F and invariance of ν,

0 =

∫
X
ϕ(y) ν(dy) =

∫
X
ϕ(y) Tν(dy) =

∫
X
Tϕ(y) ν(dy).

Since Tϕ ≥ 0, then ν({y : Tϕ(y) = 0}) = 1 (i.e. Tϕ = 0 ν − a.e., but we do not know

necessarily which elements are in the exceptional sets.). With the assumption Tϕ is continuous,

coming from the Strong property, we may assert that {y : Tϕ(y) = 0} is closed and therefore

supp(ν) ⊂ {y : Tϕ(y) = 0}. If x ∈ supp(ν), then Tϕ(x) = 0 necessarily. Also

1 =

∫
X
ϕ(y) µ(dy) =

∫
X
Tϕ(y) µ(dy).

Which implies Tϕ(y) = 1 for µ-a.e. y. Then for z ∈ supp(µ), Tϕ(z) = 1. Hence supp(µ) ∩
supp(ν) = φ.

Remark 8.6.17

1. Suppose T has the strong Feller property, and we can identify a common point in the

support of every invariant probability measure, then by Part (b) of Theorem 9.3.3 there exists

only one invariant probability measure.

2. We will see (cf. Theorem 9.3.3) that all ergodic invariant probability measure for a transition

probability are either identical or mutually singular.

Definition 8.6.18 If x ∈ X is a point such that for every neighbourhood A of x and for every

y ∈ X , P (y,A) > 0, we say that x is accessible.

Exercise 8.6.4 Let P be a time homogeneous transition probability on a complete separable

metric space X with an accessible point x. Show that if P is strong, then P can have at most

one invariant probability measure.



8.6. UNIQUENESS AND MINORISATION 148

Strong Feller property for transition probabilities with kernels

The strong Feller property holds more generally when the probability distribution of Y has a

density p(x) with respect to the Lebesgue measure, since then T?f(x) =
∫
f(y)p(y− x) = f ∗ p.

First, let us review below Lemma 8.6.19 regarding convolution of functions.

Lemma 8.6.19 Let f : Rn → R be bounded Borel measurable, and g : Rn → R be in L1(dx).

Then the convolution

f ∗ g =

∫ ∞
−∞

f(y)g(x− y)dy

is a bounded continuous function.

Proof. (a) First suppose that g ∈ C∞K is smooth with compact support. For any x ∈ Rn,

f ∗ g(x)− f ∗ g(x′) =

∫
f(y)(g(x− y)− g(x′ − y))dy → 0 , as x′ → x. (8.17)

Since g(x − y) − g(x′ − y) → 0 when x′ → x, and |f(y) (g(x − y) − g(x′ − y))| ≤ 2|f |∞|g|∞, so

that the continuity follows from the dominated convergence theorem.

(b) If g ∈ L1(R), it can be approximated by functions gk ∈ C∞K with compact support, i.e.

gk
L1

−→ g. Pick x and let x′ → x, we need to show f ∗ g(x′)→ f ∗ g(x).

The difference f ∗ g(x)− f ∗ g(x′) can be split up into 3 terms, such that

|f ∗g(x)−f ∗g(x′)| ≤ |f ∗g(x)−f ∗gk(x)|+ |f ∗gk(x)−f ∗gk(x′)|+ |f ∗gk(x′)−f ∗g(x′)| (8.18)

For the first term (recall f ∗ h = h ∗ f by the translation invariance of the Lebesgue measure)

|f ∗ g(x)− f ∗ gk(x)| ≤
∫
|f(y − x)| |gk(y)− g(y)| dy ≤ |f |∞|gk − g|L1 .

The upper bound does not depend on the points x, and the convergence is uniform in x, and

therefore the third term has the bound also: |f ∗ gk(x′) − f ∗ g(x′)| ≤ |f |∞|gk − g|L1 . Hence,

given ε > 0, there exists an N such that for k ≥ N ,

|f ∗ g(x)− f ∗ gk(x)|+ |f ∗ gk(x′)− f ∗ g(x′)| < 2

3
ε.

For the second term term of inequality (8.18), we can apply (8.17) to gN such that for some

δ = δ(ε) > 0

|f ∗ gN (x)− f ∗ gN (x′)| < ε

3
, |x− x′| < δ.

Hence using k = N in (8.18), we deduce continuity since for |x− x′| < δ we have

|f ∗ g(x)− f ∗ g(x′)| < ε .

Hence f ∗ g is continuous.
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From the Lemma, when Tf = (f ∗ g)(x) is given by convolution, the Strong Feller Property

follows immediately:

Proposition 8.6.20 Let X = Rn, g : Rn → R+ be Borel measurable and in L1(dx) such that∫
Rn g(x) dx = 1, with dx = Lebesgue measure (i.e. g(x)dx is a probability measure). Suppose

Tf(x) =

∫
f(y)g(x− y) dy.

Then T has the strong Feller property.

Proof. We can normalise g to be have mass 1 and apply the Lemma.

If T is defined by a density which is not homogeneous, strong Feller property can still proved,

but there is not such a beautiful statement. Below we explore some situations. Let Ba(x) stands

for the open ball centred at x with radius a.

Example 8.6.4 Suppose that the transition probabilities have densities with respect to a com-

mon measure µ, P (x, dy) = p(x, y)µ(dy). We suppose also the following conditions:

(1) For every y, x 7→ p(x, y) is continuous

(2a) For every x there exists a > 0 such that supx∈Ba(x) p(x, y) is integrable w.r.t. µ.

(Or more generally (2b): for every x, there exists a > 0 such that {p(z, y), z ∈ Ba(x)} is

uniformly integrable w.r.t. µ).

Then the strong Feller property holds for T .

Proof. Let f : X → R be bounded measurable function, and let xn → x.

|T?f(xn)− T?f(x)| ≤
∣∣∣∣∫ f(y)(p(xn, y)− p(x, y))µ(dy)

∣∣∣∣.
Since p(xn, y) → p(x, y) and for xn near x, |p(xn, y) − p(x, y)| ≤ supx∈Ba(x) p(x, y) and the

latter in L1, by the dominated convergence theorem, we may take the limit n → ∞ inside the

integration sign. Concerning the alternative assumption (2b), uniformly integrability will allow

us to take the limit inside the integral.

If a Markov transition function P (x, dy) is continuous in the total variation norm, then the

transition semigroup is strong Feller. The former is stronger, because the convergenece

lim
x→x0

sup
A
|Tt1A(x)− Tt1A(x0))| = lim

x→x0
sup
A
|P (x,A)− P (x0, A)| = 0,
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is uniform in the set A.

There is a theorem which states that the composition of two strong Feller Markov kernels is

continuous in the total variation norm. By the Chapman-Kolmogorov equations, a continuous

time strong Feller Markov semigroup is continuous in total variation norm as soon as the time

is positive. There are counter example of strong Feller Markov processes not continuous in the

total variation norm. See notes by Martin Hairer and notes by Jan Sedler.

8.7 Using P -invariant sets

We have seen the uniqueness of invariant probability measure due to the deterministic con-

traction (8.6). There are situations (we will see one of them immediately) where (8.6),i. e.

Ed
(
F (x, ξ1), F (y, ξ1)

)
≤ γd(x, y), only holds for x and y in some subset A of X , but where

A has the property of eventually ‘absorbing’ every trajectory. This motivates the following

discussion.

Definition 8.7.1 Let P = (P (x, ·), x ∈ X ) be a family of transition probabilities on X . A Borel

set A is said to be P -invariant if P (x,A) = 1 for every x ∈ A.

Example 8.7.1 If X is finite, a closed communication class is a P -invariant set.

Remark 8.7.2 If A is a P -invariant set and x0 ∼ π, then

P(x0 ∈ A, x1 ∈ A, . . . , xn ∈ A) = π(A).

This is a consequence of the Chapman-Kolmogorov equations:

P(x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An)

=

∫
A0

∫
A1

· · ·
∫
An−1

∫
An

P (xn−1, dxn)P (xn−2, dxn−1) · · ·P (x1, dx2)P (x0, dx1)π(dx0)

=

∫
A0

∫
A1

· · ·
∫
An−1

P (xn−1, An)P (xn−2, dxn−1) · · ·P (x1, dx2)P (x0, dx1)π(dx0)

= P(x0 ∈ A, x1 ∈ A, . . . , xn−1 ∈ A) = · · · = P(x0 ∈ A)

= π(A).

Where Ai = A to keep track of integrals.

Remark 8.7.3 Let Pπ be the stationary measure on XN and A is a P -invariant set. Let

AN = A×A× · · · ×A ∈ B(XN). Then Pπ(AN ) = π(A).

Example 8.7.2 Let X = R, and define the trasition probabilities as follows

P (x,A) =

{∫ 1
0 1A(x) dx x ≥ 0,∫ 0
−1 1A(x) dx x < 0.

∀A ∈ B(R).
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Then both [0, 1] and [−1, 0) are P -invariant sets. So are (0, 1) and (−1, 0) (absolute continuity

of Lebesgue measure). But [−1, 0] is not a P -invariant set.

More generally [0, 1 + a2] , [−1− a2, 0) are p-invariant sets for all a > 0.

Note. We can also take [0, 1] ∩QC , however restrictions to an open and closed set fits in with

our set up easily.

Remark 8.7.4 If A is a P -invariant set, π an invariant measure,

π(A) = (Tπ)(A) =

∫
A
p(x,A)π(dx) +

∫
Ac
p(x,A)π(dx) = π(A) +

∫
Ac
p(x,A)π(dx),

concluding
∫
Ac p(x,A)π(dx) = 0 and

∫
Ac p(x,B)π(dx) = 0 forB ⊂ A and π(B) =

∫
A p(x,B)π(dx).

Restrictions of Markov Chain. Given a P -invariant set A ⊂ X , so that ∀x ∈ A,P (x,A) = 1

then {P (x, ·), x ∈ A} are transition probabilities on A. Also, for any Borel set B,

P (x,B ∩A) = P (x,B), when x ∈ A.

If there exists a closed P -invariant set A ⊂ X , one can restrict P to A to obtain a Markov

process on the complete separable metric space A, and Krylov-Bugoliubov criterion (Theorem

8.4.1) can be applied. (Moreover one may be able to check (8.6) for x and y in A to establish

uniqueness of invariant measure π).

In example 8.7.2 above, we can restrict the chain to [0, 1], a compact metric space (so that

Krylov-Bugoliubov criterion can be verified).

Lemma 8.7.5 Let A be P -invariant, where P is a t.p. on X .

1. Let π0 ∈ P(A) be a probability measure on A. Define a probability measure π on X by

π(B) := π0(B ∩A), ∀B ∈ B(X ).

If π0 is invariant for P restricted to A, then π is invariant for P on X .

2. Conversely, if π is invariant for P , its restriction π0 on A is invariant for P on A.

Proof. 1. For any for any C ∈ A ∩ B(X ) = {B : B ⊂ A},

(Tπ0)(C) =

∫
A
P (x,C)π0(dx). (8.19)

Similarly for any Borel subset B of X ,

(Tπ)(B) =

∫
X
P (x,B)π(dx) =

∫
A
P (x,B)π(dx) =

∫
A
P (x,B ∩A)π(dx)

= (Tπ0)(B ∩A).

We use the fact that π(A) = 1 for the second identity, and in the third we used the fact that for

x ∈ A, P (x,Ac) = 0 hence P (x,B) = P (x,B∩A). We used B∩A ⊂ A and (8.19) to pass to the
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last line. It follows that (Tπ0)(B ∩A) = π0(B ∩A) for all B ∈ B(X ) implies that π is invariant.

In the other direction, suppose that π invariant for P , π(B) = (Tπ)(B) =
∫
A P (x,B)π(dx) for

any B ⊂ A, so π(B) =
∫
A P (x,B)π(dx), π|A is invariant P |A.

An invariant probability measure for P may not restrict to a probability measure on the

invariant set. Indeed A may even has measure zero.

Theorem 8.7.6 Let P (with associated operator T ) be a Feller transition probabilities on X .

Suppose that A is a compact P -invariant set, then the restriction of P to A is also Feller.

Consequently, there exists an invariant probability measure for P (on X ).

Proof. Let P 0 be the restriction of P to A with corresponding transition operator T 0. Since A is

compact we only need to show T 0 is Feller to conclude the existence of an invariant probability

measure for P 0, using Theorem 8.4.2. Then, by Lemma 8.7.5 there exists an invariant π ∈ P(X )

for P , with π|A = π0.

Tietze’s theorem state that any bounded continuous function on a closed subset of X extends

to a bounded continuous function on the whole space. Let f : A→ R be any bounded continuous

function, and f̄ : X → R a bounded continuous extension of f . Then, if T 0 is the transition

operator on A associated to P 0, given x ∈ A,

T 0f(x) =

∫
A
f(y)P 0(x, dy) =

∫
A
f̄(y)P (x, dy) =

∫
X
f̄(y)P (x, dy) = T f̄(x).

Where in the second-last equality we used P (x,A) = 1 for x ∈ A so
∫
Ac f̄(y)P (x, dy) = 0. This

concludes that T 0 is Feller.

Motivation. Could we use a P -invariant set for uniqueness? To show the Markov chain on

X has a unique invariant probability measure, one would like to have a criteria that ensures that

every invariant measure for P is in P(A) (i.e. has support in A). Such criteria may be satisfied

if invariant set A ⊂ X is sufficiently absorbing, as formalised in Proposition 8.7.8.

Given a P -invariant set A, consider the sequence An of sets recursively defined by

A0 = A ,

A1 = {x ∈ X : P (x,A) > 0} , (can enter A = A0)

A2 = {x ∈ X : P (x,A1) > 0} , (can enter A1)

An+1 =
{
x ∈ X : P (x,An) > 0

}
, n ≥ 0.

(8.20)

Observe that A0 ⊂ A1 since A0 is invariant. In fact, by induction

A0 ⊂ A1 ⊂ A2 ⊂ . . . .
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Since if we assume that An−1 ⊂ An, and by the definition we have P (x,An−1) > 0, then

P (x,An) ≥ P (x,An−1) > 0, ∀x ∈ An. (8.21)

So that for all x ∈ An, we must have x ∈ An+1 by definition.

With these definitions, we have

Lemma 8.7.7 Let A ⊂ X be P -invariant. For every n ≥ 1, for any x ∈ An, Pn(x,A) > 0.

Proof. The statement is true by definition for n = 1. Suppose that it is also true for n = k − 1

and let x be an arbitrary element in Ak. One then has

P k(x,A) =

∫
X
P k−1(y,A)P (x, dy) ≥

∫
Ak−1

P k−1(y,A)P (x, dy) > 0 .

The last inequality follows from the fact that the function y 7→ P k−1(y,A) is strictly positive

on Ak−1 by construction and P (x,Ak−1) > 0 by the definition of Ak.

Proposition 8.7.8 Let A be an invariant set for P and let An be defined as in (8.20). Suppose

that
⋃
n≥0An = X . Then every invariant probability measure π for P is in P(A), i.e. is an

invariant probability measure for P on A (i.e. π(A) = 1).

Proof. Assume we have π ∈ P(X ) with Tπ = π. Suppose (for a contradiction) that π(A) <

1. Since π(
⋃
n≥0An) = π(X ) = 1, by the assumption, there must exist n0 > 0 such that

π(An0 \ A) > 0. Since Tn0π = π by the invariance of π, this implies that

π(A) = Tn0π(A) =

∫
X
Pn0(x,A)π(dx) ≥

∫
A
Pn0(x,A)π(dx) +

∫
An0\A

Pn0(x,A)π(dx)

= π(A) +

∫
An0\A

Pn0(x,A)π(dx) > π(A) ,

(since A is an invariant set and so Pn(x,A) = 1 and using π(An0 \ A) > 0 and Pn0(x,A) > 0

for every x ∈ An0), this is a contradiction, so that one must have π(A) = 1.

Combining Theorem 8.7.6, with deterministic contraction Theorem 8.5.5 (Lec 18), we obtain:

Corollary 8.7.9 Suppose that A is a P -invariant set, where P is a transition probability on X
with Feller property. If A is compact,

⋃
n≥0An = X and ∃γ < 1 such that

Ed
(
F (x, ξ1), F (y, ξ1)

)
≤ γd(x, y) ∀x, y ∈ A. (8.22)

Then there exists a unique invariant probability measure π ∈ P(X ) for P .
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Proof. The restriction P 0 of P to A is also Feller (by Theorem 8.7.6). Since A is compact, The-

orem 8.4.2 gives the existence of an invariant probability measure for P 0, then the deterministic

contraction condition (8.22) leads to the uniqueness for P 0 (Theorem 8.5.5). The existence

and uniqueness of invariant probability measure π for P on X follows from Lemma 8.7.5 and

Proposition 8.7.8 respectively.

Remark 8.7.10 To determine existence and uniqueness on A one may also use any other

available criterions (e.g. Lyapunov test function method, if A not compact, and minorisation in

place of (8.22)).

8.7.1 ODEs and Random Dynamical Systems

In the next section we construct and consider an example of random dynamical system, for

which we will determine existence and uniqueness of an invariant probability measure, and the

P -invariant set on which is supported (see Proposition 8.7.17). Here we start by reviewing some

ODE settings/results and how one may then construct a Markov Chain.

A Review of ODEs

Let g : Rn → Rn and f : R → Rn be measurable functions, later we will consider system of

this form: {
ẋ(t) = g(x(t)) + f(t)

x(t0) = x0

(8.23)

Definition 8.7.11 Given the settings above, by a solution to (8.23) we mean a continuous

function (x(t), t ∈ (a, b)) such that

x(t) = x0 +

∫ t

t0

g(x(t)) ds+

∫ t

t0

f(t) ds. (8.24)

If g is locally Lipschitz continuous and f is continuous, then dx
dt exists and x(t) is continuously

differentiable.

Proposition 8.7.12 Consider the system (8.23), the following hold:

1. Maximal solution. If we assume that g is locally Lipschitz continuous and f is locally bounded,

then for every initial point x, there exists a unique maximal (local) solution.

2. Growth condition. If furthermore ∃C such that

〈x, g(x)〉 ≤ C
(
1 + |x|2

)
, ∀x ∈ Rn. (8.25)

Then there is no explosion / equation is complete (i.e. has global + unique solution). The

condition (8.25) is called one sided linear growth condition.
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3. Flow property. Suppose for every x0 = x ∈ Rn, t0 ∈ R, there exists a unique global solution

to integral equation (8.24). Denote by ϕt0,t(x) the solution, then the following semigroup/flow

property holds

ϕu,t(x) = ϕs,t(ϕu,s(x) ), for u < s < t. (8.26)

Notation: we will use ϕt(x) := ϕ0,t(x), and also denote xt = ϕt(x0).

Proof. Part (1) is covered by Piccard’s theorem (local version).

Part (2). We want to show that |x(t)|2 is finite for any t. By the chain rule

d

dt
|ϕt(x0)|2 = 2〈ϕt(x0),

d

dt
ϕt(x0)〉Rn = 2〈ϕt(x0), g(ϕt(x0)) + f(t)〉Rn .

We integrate both sides of the identity from 0 to t and also denote xt = ϕt(x0) for simplicity,

we obtain

|xt|2 =|x0|2 + 2

∫ t

0
〈xs, g(xs)〉ds+ 2

∫ t

0
〈f(s), xs〉ds

≤|x0|2 + 2

∫ t

0
c(1 + |xs|2)ds+ sup

s≤t
|f(s)|2 +

∫ t

0
|x(s)|2ds.

Re-arrange,

|xt|2 ≤|x0|2 + 2ct+ (2c+ 1)

∫ t

0
|xs|2ds+ sup

s≤t
|f(s)|2.

Hence by Gronwall’s inequality,

|xt|2 ≤ (|x0|2 + 2ct+ sup
s≤t
|f(s)|2)e2ct+t.

Part (3). The proof for the flow property is standard.

Exercise 8.7.1 Check that, if we replace f by a random variable ξ with values in C(R+,R),

and E|ξ|2 <∞ then for almost surely every ξ there exists a global solution.

If ϕ(t, x) is a global smooth flow for the ODE, let vt = dϕ(t, x0)(v0) denotes its derivative in

the direction v0 at x0. Then denote df the Jacobian of f , vt solves

dvt = dfxt(vt).

One may consider more general ODE systems, we state the following which may be used for

system (8.29) in Theorem 8.7.14 below.
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Proposition 8.7.13 Let G : R+ ×Rd → Rd be continuous and global Lipschitz in space, i.e.

|G(t, x)−G(t, y)| ≤ K|x− y|, ∀x, y ∈ Rd, ∀t.

Consider the system {
ẋ(t) = G(t, x(t))

x(t0) = x0

(8.27)

Then for any initial data x0 ∈ Rd, there exists a unique global solution which is differentiable

in time and satisfies (8.27). In particular x(t) = x0 +
∫ t
t0
G(s, x(s)) ds.

Also, if ϕt0,t(x) denotes the solution starting from x (i.e. ϕt0,t(x) = x+
∫ t
t0
G(s, x(s)) ds), then

for any t > 0 the function x 7→ ϕt0,t(x) is differentiable.

Indeed, let x0 ∈ Rn and U an open set containing x0 and suppose that for t ≤ δ, the solutions

ϕ(t, x) are defined for every x ∈ U . Then from

ϕ(t, x) = x+

∫ t

0
f(ϕ(s, x))ds+ f(t), ϕ(t, y) = y +

∫ t

0
f(ϕ(s, y))ds+ f(t),

we see that

|ϕ(t, x)− ϕ(t, y)| ≤|x− y|+
∫ t

0
|f(ϕ(s, x))− f(ϕ(s, y))| ds

≤|x− y|+K

∫ t

0
|ϕ(s, x)− ϕ(s, y)|ds.

Thus, |ϕ(t, x)− ϕ(t, y)| ≤ K|x− y|eKt.

We know go back to our system (8.23) of interest for later example.

Notation. If g : Rn → Rn is a differential function, we denote by (Dg)(x)(v) or (Dg)x(v) its

derivative at x in the direction of v. In components, if g = (g1, . . . , gn) where gi : Rn → R, then

for any x, v ∈ Rn,

Dgi(x)(v) =

n∑
k=1

∂gi
∂xk

(x)vk.

Then

Dg(x)(v) = ((Dg−)(x)(v), . . . , (Dgn)(x)(v) = J(x)v,

where J(x) is the Jacobian of g at x:

J(x) =


∂g1
∂x1

(x) . . . ∂g1
∂xn

(x)

. . .
∂gn
∂x1

(x) . . . ∂gn
∂xn

(x)

.
We denote: |Dg|x = sup|v|=1,v∈Rn |(Dg)x(v)|. Let |Dg|∞ = supx |Dg|x.
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Theorem 8.7.14 Suppose the functions g : Rn → Rn and f : R→ Rn satisfy the following:

f bounded measurable, g ∈ C1 and |g(x)− g(y)| ≤ K|x− y|, ∀x, y ∈ Rn.

Then the solution (8.24) is unique and global. Furthermore, we have (t, x) 7→ ϕt(x) continuous

and, for any fixed t, x 7→ ϕt(x) differentiable.

Let

v(t) := (Dϕt)x0(v0), for x0, v0 ∈ Rn. (8.28)

Then v(t) is the solution to the time dependent linear equation{
v̇(t) = (Dg)ϕt(x0)(v(t)) ,

v(0) = v0.
(8.29)

Note, the function (x, v) 7→ (Dg)x(v) is continuous (linear in v) and Lipschitz (by Proposition

8.7.13 applied to (8.29)).

Corollary 8.7.15 Assume the conditions of Theorem 8.7.14. If for all v ∈ Rn,

〈 (Dg)x(v) , v 〉 ≤ −c(x)|v|2. (8.30)

Then, letting vt = (Dϕt)ϕt(x)(v) (i.e. v(t) in (8.28)), for any starting x, v ∈ Rn we have

|vt| ≤ e−
∫ t
0 c(ϕs(x)) ds . (8.31)

Proof. In view of the equation (8.29) satisfied by vt and assumption(8.30), we can estimate

d

dt
|vt|2 = 2〈vt,

d

dt
vt〉 = 2〈vt, (Dg)ϕt(x)(vt)〉 ≤ −2c(ϕt(x))|vt|2.

This implies that |vt|2 ≤ e−2
∫ t
0 c(ϕs(x)) ds, hence (8.31) follows.

Remark 8.7.16 If we also have that for any x ∈ Rn, c(x) ≥ c > 0 with positive constant c.

Then we may use the following to derive contraction of the system

|ϕt(x)− ϕt(y)| ≤ |Dϕt|∞|x− y| ≤ e
−ct|x− y| . (8.32)

Example 8.7.3 Consider ẋ(t) = −x(t)+f(t) (a special case of system above). Then, by looking

at equation (8.28) in this case, we have

v̇(t) = −v(t), v(t) = v(0)e−t.

Hence we have the following contraction |ϕt(x)− ϕt(y)| ≤ e−t|x− y| .
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Construction of Markov Chains from Random Differential Equations

Let us conclude this section by a complete treatment of an example of random dynamical system.

Settings and notation. We are going to vary f (in (8.23)) along the dynamics, we denote by

ϕt(x0, f) the solution to {
ẋ(t) = g(x(t)) + f(t),

x(0) = x.

We assume that for any initial data x0, there exists a unique global solution (in the sense of

Definition 8.7.11). Let us consider the solution at time t = 1 and denote it by Φ:

Φ(x, f) = ϕ1(x, f). (8.33)

Then we shall consider {ξn} continuous iid stochastic processes, which will be the f contribution

in the ODE at each step, i.e. {
ẋ(t) = g(x(t)) + ξn(t, ω),

x(0) = x.

We extract from it a discrete time dynamics as follows:

x0 := x, x1 = Φ(x, ξ1), . . . xn = Φ(xn−1, ξn). (8.34)

The process (xn) is a Markov chain.

8.7.2 Example

We will focus on the following example.

Proposition 8.7.17 Let {ξn} be a sequence of i.i.d. C([0, 1],R)-valued random variables such

that supt∈[0,1] |ξn(t)| ≤ 1 almost surely. Let ϕt(x, f) be the solution of the differential equation

on (0,∞) of {
d
dtx(t) = 1

x(t) − 2 + f(t),

x(0) = x.
(8.35)

Let Φ(x, f) = ϕ1(x, f) and then define (xn) by setting x0 = x, x1 = Φ(t, ξ1) and recursively:

xn+1 = Φ(xn, ξn+1), n ≥ 0.

Then the Markov chain (xn) has a unique invariant probability measure π on (0,∞). Further-

more, π satisfies π([1
3 , 1]) = 1.
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Preliminaries. We have the existence and uniqueness of a solution to

ẋ(t) = g(x(t)) + f(t),

for g Lipschitz continuous (see 1. in Proposition 8.7.12).

In our case g(x) = 1
x is not locally Lipschitz on R, but it is on X = (0,∞). We need to

check that the evolution is well-defined within X , i.e. we need to show solution ϕt(x, f) of

ẋ(t) = 1
x(t) − 2 + f(t) starting with x(0) = x > 0 remains positive.

Since f ≥ −1, by the comparison theorem for ODEs, it is sufficient to consider

ẏ(t) =
1

y(t)
− 3, y(0) = x > 0. (8.36)

Then x(t) ≥ y(t) for all t. But the velocity 1
y(t) − 3 > 0 on (0, 1

3), hence y(t) > 0 for all time.

Remark 8.7.18 Consider the simpler equation

ż(t) =
1

z(t)
− 1, z(0) = x > 0, (8.37)

which is the equation (8.35) for x(t) with f ≡ 1. Note that z(t) ≡ 1 is a solution (in fact a

stable fixed point). Then one may check that the solution satisfies

z(t) + log |z(t)− 1| = c− t, (8.38)

where c = z(0) + log |1− z(0)|, for z(0) 6= 1. This does not seem to help with understanding of

the solution and our Markov chain asymptotics.2

Proof. In our settings f ∈ C([0, 1]; R), recall that we denote by ϕt(x, f) the solution to

dx

dt
=

1

x(t)
− 2 + f(t) , x(0) = x.

So that ϕ0(x, f) = x and solves the differential equation. Let Φ(x, f) := ϕ1(x, f), then our

Markov chain is defined by xn+1 = Φ(xn, ξn+1), where ξi ∈ [−1, 1], a.s. (we omit the dependence

on ω) and we define the following extremal (deterministic) maps

Φ+(x) := Φ(x, 1), Φ−(x) := Φ(x,−1).

By comparison we have

xn+1 ∈ [Φ−(xn),Φ+(xn)], a.s. (8.39)

By analysing the equations (8.36)-(8.37), for initial data x > 0 we have the following:

2Note however that taking exponential of (8.38), if z(0) 6= 1, we obtain the relation |z(t)− 1|ez(t) = ec−t → 0

as t → ∞. This then suggests that we necessarily have |z(t) − 1| t→∞−−−→ 0, hence z∗ = 1 is an attracting fixed

point (unique limit point).
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• ż(t) = 1
z(t) − 1, then z(t) ≡ 1 is an equilibrium solution, and

lim
t→∞

ϕt(x, 1) = lim
t→∞

z(t) = 1.

• ẏ(t) = 1
y(t) − 3, then y(t) ≡ 1

3 is an equilibrium solution, and

lim
t→∞

ϕt(x,−1) = lim
t→∞

y(t) =
1

3
.

P -invariance and absorbing property. Fix ε > 0 small, let A = [1
3 − ε, 1 + ε], we will show

that this is P -invariant. Note the following

(Φ−)−1(
1

3
− ε) < 1

3
− ε, (Φ+)−1(1 + ε) > 1 + ε.

Then we have A ⊂
[
(Φ−)−1(1

3 − ε), (Φ+)−1(1 + ε)
]
, which implies that (in view of (8.39)):

x0 ∈
[
(Φ−)−1(

1

3
− ε), (Φ+)−1(1 + ε)

]
=⇒ x1 ∈

[1
3
− ε, 1 + ε

]
= A.

Hence A is P -invariant. Now define an+ = (Φ+)−n(1 + ε) and an− = (Φ−)−n(1
3 − ε). Recalling

Definition 8.20, we have An+1 := {x ∈ X : P (x,An) > 0}, then iterating the above argument

we have

[ an− , a
n
+ ] ⊂ An and

⋃
n

An = X = (0,∞). (8.40)

This holds for all ε sufficiently small. To check this one uses limn∞ ϕn(x,−1) = 1
3 and limn→∞ ϕn(x, 1) =

1 and the flow property e.g. ϕ2(x, 1) = Φ+ ◦ Φ+(x) . Then, by Proposition 8.7.8, any invariant

probability measure π has π([1
3 − ε, 1 + ε]) = 1, for any ε > 0, hence π([1

3 , 1]) = 1.

Feller and Contraction. Through examining the associated derivative flow, we will establish

deterministic contraction. Let v(t) denote the derivative of ϕt(x, f) w.r.t. x. Then this solves

d

dt
v(t) = − 1

x2(t)
v(t), v(0) = 1.

The solution is given by

v(t) = exp

(
−
∫ t

0

ds

x2(s)

)
.

Since Φ(x, ξi) is differentiable in x, hence continuous in x, the process (xn) is Feller by Theorem

8.4.8. Since A = [1
3 , 1] is compact, there exists an invariant probability measure on A by

Corollary 8.4.2 (Krylov-Bogoliubov criterion). Also

Φ′(xn, ξn+1) = e
−

∫ 1
0

ds
x2(s) ≤ e

1
1+ε < 1.

This implies that the map is a contraction

E|Φ(x, ξn)− Φ(y, ξn)| ≤ e
1

1+ε |x− y|.

Then uniqueness holds on A by Theorem 8.5.5. Given P -invariance of A and
⋃
nAn = X , we

see that the Markov chain (xn) on (0,∞) has a unique invariant probability measure.



Chapter 9

The Structure Theorem and Ergodic

Theorem (Mastery Material)

A stationary time homogenous Markov chain induces a dynamical system. With Birkhoff’s

ergodic theorem we can state and prove a structure theorem of invariant probability measures.

9.1 Ergodic theory for dynamical systems

In this small section we introduce/recall some core notions of dynamical systems, these will

connect to stationary Markov chains viewed on the canonical path space XN or two-sided path

space XZ.

Definition 9.1.1 A dynamical system consists of a probability space (Ω,F ,P) and a measure

preserving measurable map θ : Ω→ Ω, i.e. a map such that P(θ−1(A)) = P(A) for every A ∈ F
(i.e. θ∗P = P).

We will denote by E expectations with respect to P as usual. In the following parts we will

be interested in the sets invariant under the transformation θ on Ω.

Definition 9.1.2 Given a measurable transformation θ on (Ω,F ,P), a set with θ−1(A) = A is

called an invariant set for θ (or θ-invariant). Then the invariant σ-algebra I ⊂ F is defined as

I = {A ∈ F : θ−1(A) = A}.

It is clear that I is again a σ-algebra. In order to emphasise the invariance with respect to θ,

we may refer an invariant set as a θ-invariant set.

161
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Definition 9.1.3 A measurable function f : Ω→ R is said to be θ-invariant (or simply invari-

ant) if f ◦ θ = f .

Note. Let f = 1A, then f is invariant iff A is invariant (w.r.t. θ), i.e.

f ◦ θ = f ⇐⇒ 1A = 1{ω : θω∈A} = 1θ−1A .

Exercise 9.1.1 Let f : Ω→ R be an F- measurable function. Then f is invariant if and only

if f is measurable with respect to the invariant σ-algebra I.

Definition 9.1.4 Given a dynamical system (Ω,F ,P) and θ. We say θ is ergodic if any θ-

invariant set has either measure 0 or measure 1. Note that this is a property of the map θ as

well as of the measure P. We also say P is ergodic (w.r.t. θ).

Proposition 9.1.5 The following statements are equivalent.

1. P is ergodic (θ is ergodic);

2. Every invariant integrable function f is almost surely a constant.

3. Every invariant bounded function is almost surely a constant.

Proof. From (2) to (3) is trivial. It remains to show (3) ⇒ (1), and (1) ⇒ (2).

(3) ⇒ (1). Assume that (3) holds. Let f = 1A where A is an invariant set. Then 1A in

invariant and 1A = 1 or 0 a.e., hence 1A = P(A) ∈ {0, 1} and P is ergodic.

(1) ⇒ (2). Suppose that P is ergodic, i.e. P(A) = 1 or 0 for any A ∈ I. Let function f be

integrable and invariant, then f is measurable with respect to I.1 We prove that f = Ef a.e. .

Note that the following sets

A+ = {ω ∈ Ω | f(ω) > Ef}, A− = {ω ∈ Ω | f(ω) < Ef}, A0 = {ω ∈ Ω | f(ω) = Ef},

are invariant sets and form a partition of Ω. Therefore, by ergodicity, exactly one of them has

measure 1 and the other two must have measure 0. Suppose P(A+) = 1, then

0 =

∫
Ω

(f −Ef) dP =

∫
A+

(f −Ef) dP.

Then f − Ef = 0 a.s. on A+, which is a contradiction. Similarly if P(A−) = 1, we also have

f = Ef a.e., hence we must have P(A0) = 1.

1See Exercise 3 of Problem Sheet 8.
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Theorem 9.1.6 (Birkhoff’s Ergodic Theorem) Let (Ω,F ,P, θ, I) be as above and let f : Ω→
R be such that E|f | <∞. Then,

lim
N→∞

1

N

N−1∑
n=0

f(θnω) = E
(
f | I

)
almost surely.

Note that if f is invariant, both sides are equal to f(ω).

The limit function E
(
f | I

)
in Birkhoff’s ergodic theorem is I-measurable. Hence ergodicity

of the dynamical system implies that E
(
f | I

)
is a.e. a constant. This leads to the following

corollary.

Corollary 9.1.7 If the dynamical system in Theorem 9.1.6 is ergodic, then

lim
N→∞

1

N

N−1∑
n=0

f(θnω) = Ef , a.s.

9.2 Dynamical Systems induced by Markov chains

9.2.1 Sequence spaces and the shift operator θ

If we have a semi-infinite sequence (a0, a1, a2, . . . ) with ai ∈ X , we define the shift operator

θ(a0, a1, a2, . . . ) = (a1, a2, a3, . . . ). (9.1)

Similarly θ can be defined on XZ in the same way. Note that we may use the inverse θ−1 instead

of θ.

Examples of invariant sets. Recall Definition 9.1.2 of an invariant set, the following are

examples of invariant sets (w.r.t. θ or θ−1 defined above) on sequence spaces XZ or XN.

1. Any constant sequence (a, a, a, . . . ) with a ∈ X , is an invariant set.

2. Similarly, for A ∈ B(X ), the following are invariant sets in XN and XZ respectively,

A×A× · · · ⊂ XN, · · · ×A×A×A× · · · ⊂ XZ.

3. The set {a, b, c} ∈ B(XZ) is an invariant set, composed of the following sequences:

a = (· · · , a, b, c, a, b, c, · · · ),
b = (· · · , b, c, a, b, c, a, · · · ), a, b, c ∈ X .
c = (· · · , c, a, b, c, a, b, · · · ),

(9.2)
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4. Similarly, we can have set-valued sequences, then the following is an invariant set on XN:

{A×B×C×A×B×C×· · · } ∪ {B×C×A×B×C×A×· · · } ∪ {C×A×B×C×A×B×· · · }.

5. The set {(an) : ∃N s.t. an ∈ B, ∀n ≥ N} where B ∈ B(X ), is a θ- invariant sub set of XZ .

Example 9.2.1 Let (Ω,F ,P) be a probability space. Let (xn) be a Markov chain with state

space X countable and transition matrix P = (Pij).

a. Let ϕ : XN → R be a bounded invariant function (i.e. ϕ ◦ θ = ϕ). Define

Y = ϕ(x0, x1, . . . ).

By the invariance, for every n ≥ 1,

Y = ϕ(x0, x1, . . . ) = ϕ ◦ θn(x0, x1, . . . ) = ϕ(xn, xn+1, . . . ), ∀n.

Let us define f(j) = E(Y |x0 = j). Then

f(y) = E(E(Y |x0, x1) |x0 = j)) = E(E(ϕ(x1, x2, . . . ) |x0, x1) |x0 = j)

= E(E(ϕ(x1, x2, . . . ) |x1) |x0 = j)

= E(f(x1) |x0 = j) = Pf(j).

We have used consecutively the tower property, the invariant property of ϕ, and the Markov

property of (xn). This means f = Pf , i.e.

f(j) =
∑
k

Pjkf(k).

** In fact, f is a ‘harmonic function’ and f(xn) is a ‘martingale’.

b. Given a measurable set B ⊂ X ,we can also take ϕ = 1B̂, where

B̂ = {x. : (xk)k≥n eventually will be in a set B}.

Example 9.2.2 Now we suppose that X = C0 ∪∪Mk=1Ck, the sets Ck are disjoint, C0 is the set

of transient states, and Ck, for each k 6= 0, is a minimal communication class. Let B denote the

subset of XN+ whose elements (an) has the property that an eventually belongs to C1. Then B

is an invariant set, and 1B an invariant function. Let Y = 1B(x0, x1, . . . ). Then as before, we

set f(j) = P(B|x0 = j), this is the probability that xn from j eventually lands in C1. We may

then solve the equations

f(j) =
∑
k

Pjkf(k)

subject to the following boundary conditions: f(j) = 1 if j ∈ C1 and f(j) = 0 if j ∈
C0, C2, . . . , CM . This system of equations may have more than one solution, if the probabil-

ities that xn stays all the time in the transient states

g(j) = P(xn ∈ C0 for all n|x0 = j),

are not all zero. We seek for the minimal solution.
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9.2.2 Construction of two sided stationary Markov chains

To obtain a dynamical system on the sequence space (either XN or XZ), we need a measure P
which is θ-invariant (i.e. θ∗P = P).

Example 9.2.3 (Stationary measures on sequence spaces)

1. The stationary measure, Pπ, induced on XN by a Markov chain with transition probabilities

P and with initial distribution an invariant probability measure π, is θ-invariant.

2. Similarly, the stationary measure on Pπ on XZ induced by a family of one step transition

probabilities P and an initial probability distribution π invariant for P , is θ-invariant. The

measure Pπ is the probability distribution of a two sided stationary Markov process,.

Given a family of transition probability measures and an invariant probability measure π for

it, we can construct a two sided Markov chain (xn, n ∈ Z), which defines a probability measure

Pπ on the space XZ of X -valued sequences. Let P = (P (x, ·), x ∈ X ) denote the transition

probabilities. Let π ∈ P(X ) with π =
∫
X P (x, ·)π(dx).

The finite dimensional distribution approach. We construct a probability measure

Pπ on XZ by specifying its finite dimensional distributions and Kolmogorov’s Theorem 4.4.2.

The process (xn, n ∈ Z) with Pπ as its probability distribution is a stationary Markov process

with t.p. P . Let µn,m denote the distribution of (x−n, . . . , x−1, x0, x1, . . . , xm) given by

P (zm−1, dzm) · · ·P (z0, dz1)P (z−1, dz0) · · ·P (z−n, dz−n+1)π(dz−n) = Πm−1
k=−nP (zk, dzk+1)π(dz−n).

Then {µn,m} is a consistent family of probability measures. Therefore (through Theorem 4.4.2)

defines Pπ on XZ, and a (stationary) Markov chain (xn, n ∈ Z) with transition probabilities P

and L(xn) = π for any n ∈ Z. See section 9.2.3 for details.

The time shift approach.

An alternative strategy is to start with a Markov process (xn, n ≥ 0) ∈ XN, with invariant

probability measure π as initial distribution, and push it back. Let
(
y

(m)
n , n ≥ −m

)
, such that

(y
(1)
−1, y

(1)
0 , y

(1)
1 , . . . ) = (x0, x1, x2, . . . ), and y(n+1) is obtained from y(n) in a similar manner.

Then y(m)
. has a limit, this limit is the required two sided stationary process. Just need to to

check the finite dimensional distributions for these processes are eventually the same.

9.2.3 Proof of two sided Markov chains construction

We begin be defining a probability measures on X k as follows. Given any positive number

n,m > 0, we define a measure Pn,mπ (earlier denoted for brevity µn,m) on X n+m+1 in the

following way. For x = (x−n, . . . , xm),∫
Xn+m+1

f(x−n, . . . , xm)Pn,mπ (dx) (9.3)
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=

n+m+1︷ ︸︸ ︷∫
X
· · ·
∫
X
f(xm−1, . . . , xm)P (xm−1, dxm) · · ·P (x−n, dx−n+1)π(dx−n).

In addition, we define
∫
X f(x0)P0,0

π (dx) =
∫
X f(x0)π(dx), and similarly Pn,0 denotes the inte-

gration w.r.t. to the coordinates (x−n, . . . , x0) and P 0,m denotes integration with respect to the

coordinates (x0, . . . , xm).

Note that

P(xn ∈ A) =

n+m+1︷ ︸︸ ︷∫
X
· · ·
∫
X

1A(x−n)P (xm−1, dxm) · · ·P (x−n, dx−n+1)π(dx−n) =

∫
X

1A(x−n)π(dx−n),

so xn is distributed as π for all n.

It’s worth to have in mind that the canonical process on the measurable space XZ with its

product σ-algebras is the evaluation of an bi-infinite sequence at a specific time n:

(. . . , x−2, x−1, x0, x1, x2, . . . , ) 7→ xn.

We view Pn,mπ (dz) as the finite dimensional probability distribution of the two sided Markov

chain, to be constructed.

Theorem 9.2.1 Let P be transition probabilities with invariant π. Then the measures Pn,m

defined by (9.3) are consistent and extends by Kolmogorov’s theorem to a measure Pπ on X z.
The corresponding Markov chain is called the two sided Markov chain associated with P and π.

Proof. It is an easy, although tedious, exercise to check that the family of measures on X 2n+1

defined by (9.3) is consistent, so that it defines a unique measure on XZ by Kolmogorov’s

extension theorem, Theorem 4.4.2. We first recall that π is an invariant measure means if∫
X P (x,A)π(dy) = π(A). We first demonstrate the consistency on the measure π(dx)P (x, dy)

on X 2 on two times: on n, n+ 1. Then∫
X

∫
A
P (x, dy)π(dx) =

∫
X
P (x,A)π(dx) = π(A),

by invariance ∫
A

∫
X
P (x, dy)π(dx) =

∫
A
π(dx) = π(A)

since P (x, dy) is a probability measure. Similarly,

Pn+1,m(X ×ΠAi) =

∫
X

∫
ΠiAi

P (xm, dxm+1)P (xm−1, dxm) · · ·P (x−n, dx−n+1)π(dx−n)

=

∫
X

∫
An+m

(∫
Πn+m−1
i=1 Ai

P (xm, dxm+1)P (xm−1, dxm) · · ·P (x−n, dx−n+1)

)
P (x−n−1, dx−n)π(dx−n)
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=

∫
An+m

(∫
Πn+m−1
i=1 Ai

P (xm, dxm+1)P (xm−1, dxm) · · ·P (x−n, dx−n+1)

)
π(dx−n)

Pn,m(×ΠAi)

We have used the duality relation for an invariant measure on functions:∫
X

∫
X
f(y)P (z, dy)π(dz) =

∫
X
f(y)π(dy).

Pn,m+1(ΠAi ×X ) =

∫
ΠiAi

∫
X
P (xm, dxm+1)P (xm−1, dxm) · · ·P (x−n, dx−n+1)π(dx−n)

=

∫
ΠiAi

P (xm−1, dxm) · · ·P (x−n, dx−n+1)π(dx−n)

Bu induction this family is consistent.

We have the following results:

Lemma 9.2.2 The measure Pπ defined in Theorem 9.2.1 defines a stationary Markov process.

Proof. Let (xn) be the Markov process with probability distribution Pπ. By the construction,

the finite dimensional projections of Pπ, to the (−n, . . . ,m) coordinates are

P(xn ∈ A−n, . . . , xm ∈ Am) =

∫
A−n

· · ·
∫
Am

P (xm−1, dxm) · · ·P (x−n, dx−n+1)π(dx−n).

This relation on the right hand side is the same for the coordinate maps (−n + 1, . . . ,m + 1).

So (xn, n ∈ Z) is stationary.

In fact Pπ is invariant under both θ1 and its inverse θ−1.

The defining equation (9.3) is in principle the same as the following

∫
f(x−n, . . . , xm)Pn,mπ (dx) =

n+m+1︷ ︸︸ ︷∫
X
· · ·
∫
X
f(x0, . . . , x2n)P (x2n−1, dx2n) . . . P (x0, dx1)π(dx0),

The reason we did not use this as the definition is that we will have to relabel these coordinates

for every pair of (n,m) to have them embedded in the bi-infinite sequential space. It is trivial

to see that P(n,m)
π = P(n+1,m+1)

π = P(n−1,m−1)
π : they are defined by the same relations.
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9.2.4 Stationary Markov chains as dynamical systems

From now on let θ be the shift operator on XZ, i.e. θ(x.)(n) = x(n+ 1), so that(
θnx
)
(m) = x(n+m) ,

and we write θ = θ1 and θ−1 = θ−1. As in previous section, we denote by I the set of all

measurable subsets of XZ that are invariant under θ,

I = {C ∈ B(X z) : θ−1C = C}.

Also let P = (P (x, ·), x ∈ X ) be a family of transition probabilities and a probability measure

π ∈ P(X ) satisfying π =
∫
X P (x, ·)π(dx).

By the definition of stationarity, one has:

Lemma 9.2.3 The triple (XZ,B(XZ),Pπ, θ) defines a dynamical system, and θ is continuous

(This is called a continuous dynamical system).

Proof. It is clear that θ is continuous (with respect to the product topology). The product

topology is the coarsest topology such that each projection map πi : ΠX → X is continuous.

We only need to test with open sets of the form π−1
i (U). It is clear that θ−1(π−1

i (U)) is an open

set. We have already seen that θ is Pπ-invariant (see Lemma 9.2.2 for details).

Let d denote the metric on X then %((an), (bn)) =
∑∞

n=1
1

2n
d(an,bn)

1+d(an,bn) is a metric inducing the

product topology.

Remark 9.2.4 Given a family of one step transition probabilities (P (x, ·), x ∈ X ) with an in-

variant π ∈ P(X ), working on XZ leads to stronger results than on XN. Think along the lines

of Birkhoff’s ergodic Theorem 9.1.6, the collection of functions {f : XN → R} contains less

information than the collections {f : XZ → R}.

Remember that the measure Pπ is ergodic if every A ∈ I has Pπ(A) ∈ {0, 1}.

Definition 9.2.5 We say that an invariant measure π of a Markov process with associated

transition semigroup T is ergodic if the corresponding measure Pπ is ergodic for θ.

Recall that a measurable subset Ā of X is said to be P -invariant if P (x, Ā) = 1 for all x ∈ Ā.

Then the θ-invariant set Π∞i=0Ā has measure

Pπ
(
Π∞i=0Ā

)
= π(Ā). (9.4)

This is the content of Remark 8.7.2. Examining the proof for Remark 8.7.3, we see the statement

(9.4) holds if the invariance is relaxed to hold for almost surely starting point x from Ā, the

almost sure property is with respect to an invariant probability measure π. This prompts the

following definition.
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Definition 9.2.6 A measurable subset Ā of X is said to be π-invariant if P (x, Ā) = 1 for π

-a.s. every x ∈ Ā.

Question. If Pπ is ergodic, then Pπ
(
Π∞i=0Ā

)
∈ {0, 1}. If furthermore Ā is π-invariant,

π(Ā) ∈ {0, 1}. Howe about the other way around? To understand the structure of invariant

probability measures, we are going to relate shift-invariant subsets of XZ with π-invariant subsets

of X .

Before closing this section, we state Birkhoff’s ergodic Theorem 9.1.6 for the dynamical

system (XZ,B(XZ),Pπ, θ) (analogous theorem holds also for the chain on XN ) applied to

functions of one time:

Corollary 9.2.7 Let f : X → R be integrable and define f̃ : XZ → R by f̃((a0, a1, . . . )) :=

f(a0). Then f̃(θna.) = f(an), so that we have

1

n

n∑
k=1

f(ak)
n→∞−−−→ EPπ(f̃ |I) Pπ − a.s. (9.5)

If π is ergodic (as in Definition 9.2.5), then

1

n

n∑
k=1

f(ak)
n→∞−−−→

∫
X
f dπ Pπ − a.s. (9.6)

Hence time average (LHS) is approximately equal to spatial average (RHS).

Just observe that EPπ f̃ =
∫
X f dπ.

9.2.5 Birkhoff’s ergodic theorem for Markov Chains

Throughout this section P = (P (x, ·), x ∈ X ) is a family of transition probabilities with transi-

tion operator Tµ(·) =
∫
X P (x, ·)µ(dx). Let

IP = {π ∈ P(X ) : Tπ = π}.

Let (xn) denote a stationary THMC on a probability space om (Ω,F ,P) with t.p. P and initial

distribution π ∈ IP .

Let us expand Birkhoff’s ergodic theorem a bit more, which hold for the dynamical system

(XZ,B(XZ),Pπ, θ). In particular we restate Birkhoff’s theorem so the statement will be in terms

of rather than Pπ a.e. sequences. Let f : XZ → R is L1(Pπ) and define

E :=
{
a. ∈ XZ :

1

n

n∑
k=1

f(θka.)
n→∞−−−→ EPπ(f̃ |I)

}
.
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Then Pπ(E) = 1 by Birkoff’s ergodic theorem 9.1.6. By definition

P({ω : x.(ω) ∈ E)}) = Pπ(E) = 1.

Therefore, for any ω ∈ Ω such that x.(ω) ∈ E, the average 1
n

∑n
k=1 f(θkx.(ω)) converges (P-a.e.

ω). This leads to the following equivalent statement:

Theorem 9.2.8 Let (xn)n∈Z be a stationary Markov process with x0 ∼ π, where π is an invari-

ant probability measure. Then the following hold:

1. For any integrable function f : XZ → R, setting f̄ = EPπ(f |I), then

1

n

n∑
k=1

f(θkx.(ω))
n→∞−−−→ f̄(x.(ω)), P-a.e. ω.

2. If furthermore π is ergodic, then

1

n

n∑
k=1

f(θkx.(ω))
n→∞−−−→

∫
XZ

f dPπ P-a.e. ω.

We can also establish the result with a fixed starting point (depending on the support of π).

Theorem 9.2.9 Let P = P (x, ·) be a transition probability with an invariant probability measure

π. Let (xn)n∈Z be a time homogeneous Markov process with t.p. P and initial position x0 = x.

Then for π-almost every x ∈ X , the following statements hold:

1. For any integrable function f : XZ → R,

1

n

n∑
k=1

f(θkx.(ω)) converges for P-a.e. ω.

2. If furthermore π is ergodic,

1

n

n∑
k=1

f(θkx.(ω))
n→∞−−−→

∫
X
f dPπ P-a.e. ω.

Proof. There are many proofs for this, here we illustrate the use of stopping times. First let

x0 ∼ π (then the Markov chain with initial condition x0 is stationary). By Theorem 9.2.8, we

have
1

n

n∑
k=1

f(θkx.) −→ f̄(x.), P-a.e. ω.

Then by the dominated convergence theorem

E

[
1

n

n∑
k=1

f(θkx.) | σ(x0)

]
n→∞−−−→ E

[
f̄(x.)|σ(x0)

]
, P-a.e. ω.
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From this we deduce that for π-almost every x,

E

[
1

n

n∑
k=1

f(θkx.) | x0 = x

]
n→∞−−−→ E

[
f̄(x.)|x0 = x

]
, P-a.e. ω.

This can be seen by testing the conditional expectation in the previous line with functions of

the form ϕ(x0) and turn the expectation into integration with respect to x0.

Example 9.2.4 Let P be a transition probability with an ergodic invariant probability measure

π. Let g : X → R in L1(π).

1

n

n∑
k=1

g(xk)
n→∞−−−→

∫
X
g dπ P-a.e. ω.

Proof. Define g̃ : XZ → R by setting g̃((y.)) := g(y0). Then we apply Theorem 9.2.9 with

function g̃. The result follows, by noting
∫
XZ g̃ dPπ =

∫
X g dπ.

Example 9.2.5 Suppose that a TMMC (xn) starts with π, an invariant probability distri-

bution, and with transition probabilities P (x, dy). Let Pπ denote the invariant distribution

on XN . Then, for a bounded measurable function g : X × X → R
∫
XN g(y1, y2)dPπ =∫

X
∫
X g(y1, y2)P (y1, dy2)π(dy1) (Note Pπ(y0 ∈ A0, y1 ∈ A1) =

∫
X P (x, dy)π(dx).) Then one

can work out a law of large numbers for sums of the form

1

n

n∑
k=1

g(xk, xk+1).

Proposition 9.2.10 Two ergodic invariant probability measures for a THMC are equal or mu-

tually singular.

Proof. Let π1 and π2 be two distinct ergodic invariant probability measures. Let f : X → R be

bounded measurable such that
∫
X f dπ1 6=

∫
X f dπ2 (which exists).

Let (xn) be a Markov chain with initial condition x. For i = 1, 2, let

Ei = {x : x0 = x, lim
n→∞

1

n

n∑
k=1

f(xk) =

∫
X
f dπi P− a.e.}.

By Corollary 9.2.4, the limit exists and equals =
∫
X f dπi for πi-a.e. x ∈ X . Then π1(E1) = 1

and π2(E2) = 1. But E1 ∩ E2 = φ, hence π1(E2) = 0 and π1, π2 are mutually singular.

9.3 Structure Theorem

In this section, we introduce a general structure theorem (Theorem 9.3.3) for Markov processes

that gives us an overview of the set of invariant probability measures. Throughout the section
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P denotes a fixed t.p. with associated transition operator T and IP = {π ∈ P(X ) : Tπ = π}.
If π1 and π2 are in IP , then any of their convex combination is in IP also (these are measures of

the form tπ1 + (1− t)π2 with t ∈ [0, 1]), i.e. IP is convex. If T is Feller, then it is a continuous

map from P(X ) to P(X ) in the topology of weak convergence. Therefore, if πn is a sequence of

invariant probability measures converging weakly to a limit π, one has

Tπ = T lim
n→∞

πn = lim
n→∞

Tπn = lim
n→∞

πn = π ,

so that π is again an invariant probability measure for P . This shows that if T is Feller, then

the set IP is closed (in the topology of weak convergence).

Remark 9.3.1 If T is not Feller, it is not true in general that I(T ) is closed. Choose for

example an arbitrary measure µ 6= δ0 on R+, and consider the transition probabilities given by

P (x, · ) =

{
δx if x < 0

µ if x ≥ 0.

In this case, δx ∈ I(T ) for every x < 0, but δ0 6∈ I(T ).

Previously we have defined an invariant set A by the property that P(x,A) = 1 for all x,

this extends to the π-invariance for π ∈ IP (X ): We say that a measurable set A ∈ B(X ) is

π-invariant if P (x,A) = 1 for π-almost every x ∈ A. We will show in Corollary 9.3.12 that π

is ergodic if and only if any π-invariant set has π measure 0 or 1. This will help us to conclude

the proof of Theorem 9.3.3, for which we will also need the following definition:

Definition 9.3.2 A probability measure π ∈ IP is an extremal, of IP , if π cannot be decomposed

as π = tπ1 + (1− t)π2 with t ∈ (0, 1) and πi ∈ IP are distinct.

9.3.1 The statements

The importance of invariant measures can be seen in the following structural theorem, which is

a consequence of Birkhoff’s ergodic theorem:

Theorem 9.3.3 Given a time homogeneous transition probability P , with corresponding tran-

sition operator T . With IP denoting the set of probability measures invariant w.r.t. P , set

E = {π ∈ P(X ) : Tπ = π, π is ergodic } ⊂ IP .

Then the following statements hold.

(a) The set IP is convex and E is precisely the set of its extremal points.

(b) Any two ergodic invariant probability measures are either identical or mutually singular.
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(c) Furthermore, every invariant probability measure π ∈ IP is a convex combination of ergodic

invariant probability measures, i.e. for every invariant measure µ ∈ I, there exists a

probability measure Qµ on E such that

µ(A) =

∫
E
ν(A)Qµ(dν) .

Remark 9.3.4 As a consequence, if a Markov process admits more than one invariant measure,

it does admit at least two ergodic (and therefore mutually singular) ones. This leads to the

intuition that, in order to guarantee the uniqueness of its invariant measure, it suffices to show

that a Markov process explores its state space ‘sufficiently thoroughly’.

This structure theorem allows to draw several important conclusions concerning the set of

all invariant probability measures of a given Markov process. For example, we have that

Corollary 9.3.5 If a time homogeneous Markov process has a unique invariant measure π, then

π is ergodic.

Proof. In this case IP = {π}, so that π is an extremal of IP .

9.3.2 Proof of the Structure Theorem

Let us start by reviewing the symmetric difference of two sets and some basic properties.

Definition 9.3.6 Given two measurable sets A and B, we use the notation A ∼ B to signify

that A and B differ by a set of P-measure 0, i.e. P(A 4 B) = 0. Where

A 4 B = (A \B) ∪ (B \A) = (A ∩BC) ∪ (B ∩AC).

Remark 9.3.7 Let us recall properties of the symmetric differences A 4 B of two sets. Firstly,

A 4 B = A ∪B \ (A ∩B).

Thus Ac 4 Bc = A 4 B. Also, for any collection of sets {Aα, Bα},(⋃
α

Aα
)
4
(⋃
α

Bα
)
⊂
⋃
α

(
Aα 4 Bα

)
.

Also if f : Ω→ Ω is any measurable function, then

f−1(A 4 B) = f−1(A 4 B).

Furthermore

(A 4 B) 4 (B 4 C) = A 4 C.

Finally, we have

P(A 4 B) = 0 =⇒ P(A) = P(B),

since we can decompose A = (A \B) ∪ (B \ (B \A)) = (A \B) ∪ (A ∩B).
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For the proof, we will approximate sets belonging to one particular σ-algebra by sets belonging

to another σ-algebra. In this context, it is convenient to introduce a notation for the completion

of a σ-algebra under a given probability measure. Assuming that it is clear from the context

what the probability measure P is, we define the completion of a σ-algebra as follows.

Definition 9.3.8

1. A σ-algebra F is complete with respect to probability measure µ if whenever B ∈ F and

µ(B) = 0, then any subset A ⊂ B belongs to F .

2. The completion F̄ of a σ-algebra F is the smallest σ-algebra containing F with the additional

property that if A ∈ F̄ with P(A) = 0 and B ⊂ A is any subset of A, then B ∈ F̄ .

Note. Suppose G ⊂ F . If D ∈ G, E ∈ F with µ(E) = 0, then D \ E ∈ Ḡ.2

Notation. We consider (XZ,B(XZ),Pπ), both θ and θ−1 are measure preserving transforma-

tions on XZ. We write P = Pπ when there is no confusion and we use the following σ-algebras

of finite number of projections

Fmn := ∨mk=−nσ(xk) ⊂ B(XZ).

Also our invariant sets of reference are I = {A ∈ B(XZ) : θ−1A = A}. We start with proving

that sets in B(XZ) can be approximated by cylindrical sets.

Lemma 9.3.9 Let A ∈ B(XZ), then for any ε > 0, there exists N > 0 and Aε ∈ FN−N such that

P(A 4 Aε) < ε.

Proof. We want to show that

B(XZ) = {A ∈ B(XZ) : ∀ε > 0, ∃N > 0 & Aε ∈ FN−N with P(A 4 Aε) < ε} .

Denote the collections of sets on the right hand side by B0, which contains all cylindrical sets.

It suffices to show that B0 is a σ-algebra. For this, since B0 clearly contains φ and XZ and is

stable under taking complements, it suffices to consider countable unions. For a sequence of

events {Aj}j≥1 ⊂ B0, we can by assumption find a sequence Nj and events A′j ∈ F
Nj
−Nj such that

P(Aj 4 A′j) ≤ ε2−j . Since P is finite, we can also find J such that, setting A =
⋃
j≥1Aj , one

has P(A 4
⋃
j≤J Aj) ≤ ε. We conclude that

P
(
A 4

⋃
j≤J

A′j
)

= P
((
A 4

⋃
j≤J

Aj

)
4
(⋃
j≤J

Aj 4
⋃
j≤J

A′j

))
≤ P

(
A 4

⋃
j≤J

Aj
)

+ P
(⋃
j≤J

Aj 4
⋃
j≤J

A′j
)

2This is because D \ E = D \ (D ∩ E), and by the definition of completion Ḡ.
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≤ ε+ P
(⋃
j≤J

(
Aj 4 A′j

))
≤
∑
j≤J

2ε

Since
⋃
j≤J A

′
j ⊂ FN−N for N = max{Nj : j ≤ J}, the claim follows.

Lemma 9.3.10 For any A ∈ I, for any l ∈ Z, there exists Âl ∈ σ(xl) such that A ∼ Âl.

Proof. Let A ∈ I. By Lemma 9.3.9, given any ε > 0 there exists N = N(ε) > 0 and Aε ∈ FN−N
such that P(A 4 Aε) < ε. Since

θ−1(A 4 Aε) = θ−1(A) 4 θ−1(Aε) = A 4 θ−1(Aε)

and P is θ-invariant, then

P(A 4 θ−kAε) < ε, ∀k ≥ 0. (9.7)

For this N and for any fixed k, θ−(N+k)Aε ∈ F2N+k
k ⊂ F∞k holds for any ε.

Fix k and set εm = 1
m , then define

Dε
n = θ−(N+k)A ε

2n
∈ F∞k , D =

⋂
m≥1

∞⋃
n=1

Dεm
n ∈ F∞k . (9.8)

Note that by (9.7) we have P(A 4 Dε
n) < ε

2n , then

P

( ∞⋂
n=1

(A \Dεm
n )

)
= lim

n→∞
P(A \Dεm

n ) ≤ lim
n→∞

εm
2n

= 0. (9.9)

On the other hand for any m,

P(D \A) ≤ P

( ∞⋃
n=1

Dεm
n \A

)
= P

( ∞⋂
n=1

(A \Dεm
n )

)
≤ εm

2n
≤ 1

m
, =⇒ P(D \A) = 0. (9.10)

It remains to show P(A \D) = 0 to have A ∼ D, using (9.9)

P(A \D) = P

A \ ⋂
m≥1

∞⋃
n=1

Dεm
n

 = P

⋃
m≥1

∞⋂
n=1

(A \Dεm
n )

 = 0. (9.11)

Hence for any k we found D(k) := D such that

P(A 4 D(k)) = 0 and D(k) ∈ F∞k . (9.12)

Similarly, using θ−1 in place of θ we found D(−k) ∈ F−k−∞, with P(A 4 D(−k)) = 0.

Then for any l such that −k < l < k, by independence of past/future given present (an

extension of Theorem 3.1.6), we obtain the following

E[ 1A | σ(xl) ] = E[ 12
A | σ(xl) ] = E[1D(−k)1D(k) |σ(xl)] = E[1D(−k) |σ(xl)] E[1D(k) |σ(xl)]
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= ( E[ 1A | σ(xl) ] )2.

Hence E[ 1A | σ(xl) ](ω) = 1 or 0 almost surely. Let

Â := {ω ∈ XZ : E[ 1A | σ(xl) ](ω) = 1} ∈ σ(xl). (9.13)

Then E[ 1A | σ(xl) ] = 1Â, and also E[ 1AC | σ(xl) ] = 1ÂC . Then for any E ∈ σ(xl) ⊂ XZ, we

have

P(A ∩ E) = E(E[ 1A |σ(xl) ]1E) = P(Â ∩ E).

In particular P(A ∩ ÂC) = P(φ) = 0 and similarly P(Â ∩AC) = 0. Hence

A 4 Â = (A ∩ ÂC) ∪ (Â ∩AC) has measure zero.

Then Â` := Â is the σ(x`)-measurable function which differs from A be a measure zero set.

This marks end of lecture 23 - Week 10.

Proposition 9.3.11 For any A ∈ I, there exists Ā ∈ B(X ) such that A ∼ Πi∈ZĀ

Proof. By Lemma 9.3.10, there exists Â ∈ σ(x0) with A ∼ Â. Let Ā ∈ B(X ) such that

Â = {ω ∈ XZ : x0(ω) ∈ Ā}. Then, by invariance of A and P (w.r.t. θ) P(A 4 θ−nÂ) =

P (θ−n(A 4 Â) ) = 0, so that

P

( ∞⋃
n=−∞

A 4 θ−nÂ

)
= 0.

Note that θ−nÂ = {ω : xn(ω) ∈ Ā}, then for any n we can check

n⋂
k=0

θ−kÂ = {ω : x0 ∈ Ā, x1 ∈ Ā, . . . , xn ∈ Ā } ∼ A.

Hence conclude {xi ∈ Ā, i ∈ Z } = Πi∈ZĀ ∼ A.

Given π ∈ P(X ), recall that Ā ⊂ X is π-invariant if P (x,A) = 1 for π-almost every x ∈ Ā.

Corollary 9.3.12 Let π be an invariant probability measure for P . Then π is ergodic if and

only if every π-invariant set Ā is of π-measure 0 or 1.

Proof. (⇒). If Ā is π-invariant (cf. (9.4), Remark 8.7.2, and Remark 8.7.3) then

Pπ
(
Πi∈ZĀ

)
= π(Ā). (9.14)

Assume Pπ is ergodic so any θ-invariant set has measure 0 or 1. Since · · ·×Ā×Ā×Ā×· · · ⊂ XZ

is θ-invariant then Pπ
(
Πi∈ZĀ

)
∈ {0, 1} and we conclude that π(Ā) = 0 or 1.

(⇐). For any A ∈ I, by Proposition (9.3.11) there exists Ā ∈ B(X ) such that A ∼ Πi∈ZĀ.

If Pπ(A) = 0 then as a projection of A, π(Ā) = 0. Otherwise Pπ(A) = 1 and Ā must be π-

invariant. Indeed, then P(x1 ∈ Ā) = 1 =
∫
X P (z, Ā)π(dz) = 1 which implies that P (z,A) = 1

a.e. z. Hence, by assumption π(Ā) ∈ {0, 1}. Then, applying (9.14), we get Pπ(A) = 0 or 1.
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Proposition 9.3.13 Let π be an invariant probability measure. Then π is ergodic if and only

if π is an extremal of IP = {ν ∈ P(X ) : Tν = ν}.

Proof. (⇒). Suppose π is not an extremal, i.e. π = tπ1 + (1 − t)π2, where t ∈ (0, 1) and

π1 6= π2 ∈ P(X ). Then Pπ = tPπ1 + (1 − t)Pπ2 . We show by contradiction π is not ergodic.

Suppose π is ergodic, then for any θ-invariant set A,

tPπ1(A) + (1− t)Pπ2(A) ∈ {0, 1}.

This implies either Pπ1(A) = Pπ2(A) = 0 or Pπ1(A) = Pπ2(A) = 1. Therefore π1 and π2 are

ergodic. By Proposition 9.2.10, π1, π2 are mutually singular. Then there exists a measurable

set E such that π1(E) = 1, π2(E) = 0 which means Pπ1(Πi∈ZE) = 1 and Pπ2(Πi∈ZE) = 0. In

particular, Pπ(Πi∈ZE) = tPπ1(Πi∈ZE) + (1 − t)Pπ2(Πi∈ZE) = t < 1. This is in contradiction

with π ergodic.

(⇐). Suppose π is not ergodic. There exists a π-invariant set F with 0 < π(F ) = t < 1 (c.f.

Corollary 9.3.12). Let π1, π2 ∈ P(X ) be defined as

π1(B) =
1

t
π(B ∩ F ) , π2(B) =

1

1− t
π(B ∩ FC).

Then we can write π = tπ1 + (1− t)π2 where π1 and π2 are probability measures. We will show

that both π1, π2 are invariant measures.

By π-invariance, P (x, F ) = 1 for π-a.e. x ∈ F . By Lemma 8.7.5, the restriction of an

invariant measure π to a π-invariant invariant set in invariant, the statement in that Lemma

is for restrictions to P-invariant sets (the proof there shows the statement holds for π-invariant

set). On the other hand

π(FC) =

∫
F
P (x, FC) dπ +

∫
FC

P (x, FC) dπ =

∫
FC

P (x, FC) dπ.

This implies P (x, FC) = 1, for π-a.e. x ∈ FC . Hence π2, as the restriction of π on invariant set

FC is itself invariant. Therefore both π1, π2 ∈ IP .

The proof of the Structure Theorem is concluded, now we apply Corollary 9.3.5 to obtain:

Proposition 9.3.14 Let A ⊂ X be a P -invariant set. Let A0 = A and defined recursively

An = {x ∈ X , P (x,An−1) > 0}. Suppose

X =

∞⋃
n=1

An and A =

m⋃
k=1

Bk,

where {Bk} are disjoint closed sets with each Bk P -invariant. If the THMC restricts to Bk
has unique invariant measure πk, then πk are ergodic and they are the only ergodic invariant

probability measures.
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Proof. Restricting to Bk, the ergodicity follows from Corollary 9.3.5. If π ∈ IP , since X =⋃∞
n=1An, then π(A) = 1 (cf. Proposition 8.7.8). The restriction of π on the π-invariant sets

Bk is an invariant probability measure for P (see second half of last proof, Proposition 9.3.13).

Since on Bk there exists a unique invariant measure, then we can uniquely decompose

π =
m∑
k=1

π(Bk)πk

concluding the proof.

This marks end of lecture 24 - Week 10.

9.3.3 Proof of Birkhoff’s Ergodic Theorem

This is not covered in the lectures. Before we turn to the proof of Theorem 9.1.6, we establish

the following important result:

Theorem 9.3.15 (Maximal Ergodic Theorem) Let (Ω,F ,P, θ) be a dynamical system with

invariant σ-algebra and let f : Ω→ R be such that E|f | <∞. Define

SN (ω) =
N−1∑
n=0

f(θnω) , MN (ω) = max{S0(ω), S1(ω), . . . , SN (ω)} ,

with the convention S0 = 0. Then,
∫
{MN>0} f(ω)P(dω) ≥ 0 for every N ≥ 1.

Proof. Note that f(ω) + Sk(θω) = Sk+1(ω), and Sk(θω) ≤ MN (θω), for every 0 ≤ k ≤ N and

every ω ∈ Ω by definition, and so f(ω) +MN (θω) ≥ f(ω) + Sk(θω) = Sk+1(ω). Therefore

f(ω) ≥ max{S1(ω), S2(ω), . . . , SN (ω)} −MN (θω) .

Furthermore, MN (ω) = 0∨max{S1(ω), . . . , SN (ω)} = max{S1(ω), . . . , SN (ω)} on the set {MN >

0} and on this set f(ω) ≥MN (ω)−MN (θω) so that∫
{MN>0}

f(ω)P(dω) ≥
∫
{MN>0}

(
MN (ω)−MN (θω)

)
P(dω) ≥ EMN −

∫
AN

MN (ω)P(dω) ,

where AN = {θω |MN (ω) > 0}. The last inequality follows from the fact that θ is measure-

preserving with the second-to-last term follows from the fact that MN ≥ 0. Since MN ≥ 0,∫
AMN (ω)P(dω) ≤ EMN for every set A so that the expression above is greater or equal to 0,

which is the required result.

We can now turn to the Proof of Birkhoff’s Ergodic Theorem.
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Proof. Replacing f by f −E(f | I), we assume without loss of generality that E
(
f | I

)
= 0. Let

η̄ = lim sup
n→∞

Sn
n
, η = lim inf

n→∞

Sn
n
.

It is sufficient to show that η̄ ≤ 0 almost surely, since this implies (by considering −f instead

of f) that η ≥ 0 and so η̄ = η = 0. It is clear that η̄(θω) = η̄(ω) for every ω, so that, for every

ε > 0, one has

Aε = {η̄(ω) > ε} ∈ I.

Define

f ε(ω) =
(
f(ω)− ε

)
χAε(ω) ,

and define SεN and M ε
N accordingly. It follows from Theorem 9.3.15 that∫

{Mε
N>0}

f ε(ω)P(dω) ≥ 0

for every N ≥ 1. The sequence of sets {M ε
N > 0} = {max{Sε0(ω), Sε1(ω), . . . , SεN (ω)} > 0}

increases to the set

Bε ≡ {sup
N
SεN > 0} = {sup

N

SεN
N

> 0}.

Note that with these definitions we have that

SεN (ω)

N
=

{
0 if η̄(ω) ≤ ε

SN (ω)
N − ε if η̄(ω) > ε

(9.15)

It follows from (9.15) that, and η̄ = lim supn→∞
Sn
n ,

Bε = {η̄ > ε} ∩
{

sup
N

SN
N

> ε
}

= {η̄ > ε} = Aε .

Since E|f ε| ≤ E|f |+ ε <∞, the dominated convergence theorem implies that

lim
N→∞

∫
{Mε

N>0}
f ε(ω)P(dω) =

∫
Aε
f ε(ω)P(dω) ≥ 0 ,

and so

0 ≤
∫
Aε
f ε(ω)P(dω) =

∫
Aε

(
f(ω)− ε

)
P(dω)

=

∫
Aε
f(ω)P(dω)− εP(Aε)

=

∫
Aε

E
(
f | I

)
(ω)P(dω)− εP(Aε) = −εP(Aε) ,

where we used the fact that Aε ∈ I to go from the first to the second line, and the assumption

E
(
f | I

)
(ω) = 0 in the last line. Therefore, one must have P(Aε) = 0 for every ε > 0, which

implies that η̄ ≤ 0 almost surely.
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9.3.4 Example

Let us finish this course with a final example. Consider a sequence ξn of i.i.d. random variables

that take the values ±1 with equal probabilities and fix some small value ε > 0. Define a Markov

process {xn} so that, given xn, xn+1 is the solution at time 1 to the differential equation

dx(t)

dt
= sinx(t) + εξn sin x(t)

2 , x(0) = xn .

It is a good exercise to check the following facts:

• The measures δ2kπ with k ∈ Z are invariant (and therefore ergodic because they are

δ-measures) for this Markov process.

• For ε sufficiently small (how small approximately?), the sets of the form [(2k+3/4)π, (2k+

5/4)π] with k ∈ Z are invariant and there exists a unique (and therefore ergodic) invariant

measure on each of them.

• The invariant measures that were just considered are the only ergodic invariant measures

for this system.

The key is to observe that the points (2k + 1)π are stable stationary solutions for the ODE
dx(t)
dt = sinx(t).



Chapter 10

Appendix

10.1 Time reversal on general state space

Given a time homogeneous Markov chain (xn, n ≥ 0) on a general state space X with transition

probability P and a corresponding invariant measure π, we may start the chain from the initial

distribution π, then xn is distributed as π for every n ≥ 0. One can say more: the random

function ω → (x·(ω)) with state space the sequence space X {0}∪N is stationary. Since the

multi-time marginals determine a probability measure on X {0}∪N, one can say this probability

measure is stationary. It is convenient to extend this to construct a 2-sided stochastic process

(xn, n ∈ Z) and so it determines a probability measure on the space of bi-infinite sequences XZ

(this is the canonical space for two sided Markov chains) with the property that is invariant

under shifting θn. We also like it to be also invariant under time reversal, this is not always

possible, when it does we say the chain is time reversible.

Definition 10.1.1 We define on XZ the family {θn} of shift maps and the time-reversal map

% by (
%(x·)

)
k

= x−k ,
(
θn(x·)

)
k

= xk+n .

Note that one has the group property θk ◦ θ` = θk+`, so that the family of maps θn induces a

natural action of Z on XZ. With these two maps at hand, we give the following definitions:

Definition 10.1.2 A probability measure P on XZ is said to define a stationary process if

θ∗nP = P for every n ∈ Z; it is said to define a reversible process if %∗P = P.

In other words, a stationary process is one where, statistically speaking, every time is equiv-

alent.

181
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10.1.1 Reversible Process**

A reversible process is one which looks the same whether time flows forward or backward. It

turns out that, for Markov processes, there is an easy criteria that allows to check whether a

given process is reversible or not: it is sufficient to work flip two adjacent coordinates and work

with the two times marginal P (2)π on X 2:(
P (2)π

)
(A×B) =

∫
A
P (x,B)π(dx) = P(x0 ∈ A, x1 ∈ B) . (10.1)

Observe that (P (2)π
)
(A×B) is the two time probability distribution of the chain. Let us define

%(2) : X 2 → X 2 by %(2)(x, y) = (y, x).

With this notation, we have

Theorem 10.1.3 Consider a stationary Markov process (xn) with transition probabilities P and

invariant measure π.

(1) Suppose that there exist transition probabilities Q such that (%(2))∗(P
(2)π) = Q(2)π. Then

the process yn = x−n is also a stationary Markov process, with transition probabilities Q

and invariant measure π.

(2) The measure Pπ defined in Theorem 9.2.1 defines a reversible Markov process if and only

if one has (%(2))∗(P
(2)π) = P (2)π, i.e. the two time marginals are invariant under the

flipping map.

Remark 10.1.4 Observe that (%(2))∗(P
(2)π) = P (2)π is equivalent to: for every measurable

and integrable function f : X 2 → R,∫
X

∫
X
f(x, y)P (x, dy)π(dx) =

∫
X

∫
X
f(x, y)P (y, dx)π(dy).

Similarly, (%(2))∗(P (2)π) = Q(2)π implies that P (2)π(A×B) = Q(2)π(B×A) and also π is an

invariant probability measure for Q.

Proof. For part (2), it is obvious that the condition is necessary since otherwise the law of

(x0, x1) would be different from the law of (x1, x0) under Pπ. The sufficiency follows from part

(1). since on can take Q = P . For part (1), note that the assumption (%(2))∗(P (2)π) = Q(2)π is

just another way of saying that∫
X

∫
X
f(x, y)P (x, dy)π(dx) =

∫
X

∫
X
f(x, y)Q(y, dx)π(dy) ,

for every measurable and integrable function f : X 2 → R. We apply this to a function on

X n+m+1 and flip two consecutive coordinates successively:

f(x−n, x1, . . . , xm−1, xm)→ f(x−n, . . . , xm, xm−1)→ · · · → f(xm, xm−1, . . . , x−n+1, x−n).
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It is then evident that the flipping of 2-coordinates is sufficient to determine the time reversal

on XZ . More precisely we have,∫
f(x−n, . . . , xm)Pπ(dx)

=

n+m+1︷ ︸︸ ︷∫
X
· · ·
∫
X
f(x−n, . . . , xm)P (xm−1, dxm) · · ·P (x−n, dx1−n)π(dx−n)

=

∫
X

∫
X


n+m−1︷ ︸︸ ︷∫
X
· · ·
∫
X
f(x−n, . . . , xm)P (xm−1, dxm) · · ·P (x−n+1, dx−n+2)

P (x−n, dx1−n)π(dx−n)

=

∫
X

∫
X


n+m−1︷ ︸︸ ︷∫
X
· · ·
∫
X
f(x−n, . . . , xm)P (xm−1, dxm) · · ·P (x−n+1, dx−n+2)

Q(x1−n, dx−n)π(dx1−n)

=

n+m+1︷ ︸︸ ︷∫
X
· · ·
∫
X
f(x−n, . . . , xm)P (xm−1, dxm) · · ·Q(x1−n, dx−n)P (x1−n, dx2−n)π(dx1−n)

=

n+m+1︷ ︸︸ ︷∫
X
· · ·
∫
X
f(x−n, . . . , xm)P (xm−1, dxm) · · ·Q(x1−n, dx−n)Q(x2−n, dx1−n)π(dx2−n) .

Proceeding in the same fashion, we finally arrive at∫
f(x−n, . . . , xm)Pπ(dx)

=

n+m+1︷ ︸︸ ︷∫
X
· · ·
∫
X
f(x−n, . . . , xm)Q(x1−n, dx−n) · · ·Q(xm, dxm−1)π(dxm)

=

∫
f(x−n, . . . , xm)

(
%∗Qπ

)
(dx) ,

where we denoted by Qπ the law of the stationary Markov process with transition probabilities Q

and invariant measure π. Since this holds for every pairs of (n,m) for which the finite dimensional

distributions are defined, This shows that Pπ = %∗Qπ and therefore that %∗Pπ = Qπ, which is

the desired result.

Note that in the case where X is countable, the condition (10.1) can be written as the detailed

balance relation

Pijπj = Pjiπi (10.2)

for every pair i, j. Summing over j in (10.2) or choosing B = X in (10.1), we see that if there

exists a probability measure π such that (10.1) holds, then this measure is automatically an



10.1. TIME REVERSAL ON GENERAL STATE SPACE 184

invariant measure for P . This allows one to easily ‘guess’ an invariant measure if one believes

that a given process is reversible by using the equality

πi
πj

=
Pij
Pji

.

Closer inspection of this equation allows to formulate the following equivalent characterisation

for reversibility:

Lemma 10.1.5 An irreducible Markov process on a finite state space with transition probabili-

ties P is reversible with respect to some measure π if and only if one has

Pi1inPinin−1 · · ·Pi3i2Pi2i1 = Pini1Pi1i2 · · ·Pin−2in−1Pin−1in (10.3)

for every n and every sequence of indices i1, . . . , in.

In other words, such a process is reversible if and only if the product of the transition

probabilities over any loop in the incidence graph is independent of the direction in which one

goes through the loop.

Proof. In order to show that the condition is necessary, let us consider the case n = 3. If the

process is reversible, by the detailed balance rerlation one has

Pi1i3Pi3i2Pi2i1πi1 = Pi1i3Pi3i2Pi1i2πi2 = Pi1i3Pi2i3Pi1i2πi3 = Pi3i1Pi2i3Pi1i2πi1 .

Since the process is irreducible, we can divide by πi1 on both sides and get the desired equality.

The proof for arbitrary n works in exactly the same way.

Let us now show that the condition is sufficient. Fix one particular point in the state space,

say the point 1. Since the process is irreducible, we can find for every index i a path i1, . . . , in
in the incidence graph connecting 1 to i (we set i1 = 1 and in = i). We then define a measure

π on the state space by

πi =
Pinin−1

Pin−1in

Pin−1in−2

Pin−2in−1

· · · Pi2i1
Pi1i2

.

Note that (10.3) ensures that this definition does not depend on the particular path that was

chosen. Since our state space is finite, one can then normalise the resulting measure in order to

make it a probability measure. Furthermore, one has

Pjiπi
Pijπj

=
Pji
Pij
·
Pinin−1

Pin−1in

Pin−1in−2

Pin−2in−1

· · · Pi2i1
Pi1i2

·
Pjn−1jn

Pjnjn−1

Pjn−2jn−1

Pjn−1jn−2

· · · Pj1j2
Pj2j1

. (10.4)

Since we have i = in, j = jn, and i1 = j1, the path i1, . . . , in, jn, . . . , j1 forms a closed loop and

the ratio in (10.4) is equal to 1. This shows that the detailed balance relation holds and the

process is indeed reversible with respect to π (and therefore that π is its invariant measure).
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Example 10.1.1 Let α ∈ (0, 1) and β > 0 be some fixed constants and let {ξn} be a sequence

of i.i.d. N (0, 1) random variables (with values in R). Define a Markov process on R by the

recursion relation,

xn+1 = αxn + βξn .

Since αx+ βξ1 ∼ N(αx, β2),

P (x,A) = P(αx+ βξ1 ∈ A) =

∫
A

1√
2πβ2

e
− (y−αx)2

2β2 dy.

Since xn+1 = αxn + βξn is distributed as a Gaussian random variable with expectation 0 (if xn
is Gaussian with mean zero ) and variance αEx2

n + β2. To determine a steady state measure

we set σ2 = Ex2
n + β2, then σ2 = β2

1−α2 . It is immediate that π = N
(
0, β2

1−α2

)
is an invariant

measure for this process (in fact it is the only one). Let x0 ∼ π. The measure P (2)π is given by

P(x0 ∈ A, x1 ∈ B) =

∫
A

∫
B
P (x, dy)π(dx) =

∫
A

∫
B

1√
2πβ2

e
− (y−αx)2

2β2

√
1− α2√
2πβ2

e
−x

2(1−α2)
2β2 dxdy.

Then P(x0 ∈ R, x1 ∈ B) = π, verifying that π is an invariant measure. To summarise,

(
P (2)π

)
(dx, dy) = C exp

(
−(1− α2)x2

2β2
− (y − αx)2

2β2

)
dx dy

= C exp
(
−x

2 + y2 − 2αxy

2β2

)
dx dy ,

for some constant C. It is clear that this measure is invariant under the transformation x↔ y,

so that this process is reversible with respect to π. This may appear strange at first sight if

one bases one’s intuition on the behaviour of the deterministic part of the recursion relation

xn+1 = αxn.

Example 10.1.2 Let L > 0 be fixed and let X be the interval [0, L] with the identification

0 ∼ L (i.e. X is a circle of perimeter L). Let {ξn} be again a sequence of i.i.d. N (0, 1) random

variables and define a Markov process on X by

xn+1 = xn + ξn (mod L) .

In this case, an invariant probability measure is given by the multiple of the Lebesgue measure

π(dx) = dx/L, and the transition probabilities are given by

P (x, dy) = C
∑
n∈Z

exp
(
−(y − x− nL)2

2

)
dy .

Since this density is symmetric under the exchange of x and y, the process is reversible with

respect to the Lebesque measure.
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Example 10.1.3 Let (V,E) be a non-oriented connected graph and let x be a random walk on

V defined in the following way. Let us fix a function p : V → (0, 1). If xn = v ∈ V , then xn+1

is equal to v with probability p(v) and to one of the kv adjacent edges to v with probability

(1− p(v))/k(v). In this case, the measure π(v) = ck(v)/(1− p(v)) is invariant and the process

is reversible with respect to this measure.

Finally, let us note that if a Markov process with transition probabilities P is reversible with

respect to some probability measure π, then the operator T? is symmetric when viewed as an

operator on L2(X , π).

10.2 Metric and topological spaces: a review

To ease into the next section, we briefly review some of the useful facts concerning metric spaces.

This is for self-study only. Let X be a metric space with distance d. A subset U is open if every

point of E is contained in an open ball B(x, r) and B(x, r) ⊂ U . A closed set is the complement

of an open set. The closure of a subset A is the intersection of all closed subset of A, it is the

complement of the union of all open subsets of Ac. In other words it is the smallest closed set

containing A, and is denoted by Ā. A sequence xn is said to converge to x if d(xn, x)→ 0.

Definition 10.2.1 (1) A metric space X is said to be compact if any cover of it by open sets

has a finite sub-covering (The Heine-Borel property).

(b) A subset of a metric space is compact if it is compact as a metric space with the inherited

metric.

(c) It is separable if it has a dense countable subset A (dense means Ā = X ).

(d) A subset E of X is relatively compact if its closure Ā is compact).

A metric space is discrete if for every point x ∈ X there exists a ball B(x, r) containing no

other point (thus every singleton set {x} is an open, so is any subset of X ). If a metric space is

discrete, then the discrete distance function (i.e. the distance between any two distinct points

to be 1) defines a metric which is equivalent to the original one. A discrete space is compact

if and only if it is finite. A separable discrete space has no more than a countable number of

points.

Definition 10.2.2 (a) A metric space E (or its subset) is complete if every Cauchy sequence

from it converges to a point in the set. A complete subset of X is closed.

(b) A metric space is totally bounded if for any ε > 0, X has a finite covering of open balls (or

closed balls) of radius ε.
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A closed subset of a complete metric space is complete, a complete subset of a metric space is

closed.

Proposition 10.2.3 Let K be a subset of a metric space (X , d). The following are equivalent.

• It is compact.

• (Bolzano-Weierstrass property) Every sequence from it has a convergent subsequence, the

limit is necessarily in K.

• It is complete and totally bounded.

The second property is also called ‘sequential compactness’. A subset E of X is relatively

compact if its closure is a compact set. It is equivalent to the property that every sequence from

it has a convergent subsequence (the limit does not necessarily belong to E).

Definition 10.2.4 A topological space is a set X with a collection of subsets, called a topology.

Every set from the topology is called an open set. The topology must contain X and the empty

set, and closed under arbitrary unions and finite intersections.

• φ ∈ T and X ∈ T .

• If {A0, A1, . . . , AN} ⊂ T , then
⋂N
n=0An ∈ T .

• If A ⊂ T , then
⋃
A∈AA ∈ T .

A metric space and its open sets defines a topological space. A topological space X is metrisable

if there exists a metric on X such that its open sets agree with the topology on X . We can

detect the topology by the convergence of sequences. Are there distinct topologies on a space X
such that any sequence converging in one topology also converge in the other? In general yes.

However, if a space is metrisable, the topology is determined by convergences of sequences (see

Kelley: General Topology), which explains we sometimes only define the concept of convergence,

without explicitly mention the topology. The notion of weak convergence of probability measures

on a complete separable metric space will be directly linked to the ‘weak topology’.

A function between topological spaces is continuous if the pre-images of open sets are open

sets. We would be interested in the continuity of a real valued function f : X → R. On a metric

space this concept of continuity agree with the usual continuity: For any ε > 0 there exists δ > 0

such that if d(y, x) < δ, |f(y)− f(x)| < ε.

10.3 Measures on metric spaces

A metric space is compact if any covering of it by open sets has a sub-covering of finite open sets.

A discrete metric space (whose subsets are all open sets ) is compact if and only if it is finite.
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(e.g. Z and N with the usual distance d(x, y) = |x − y| is not compact.) A subset of a metric

space is compact if it is compact as a metric space with the induced metric. It is relatively

compact if its closure is compact. A metric space is sequentially compact if every sequence of its

elements has a convergent sub-sequence (with limit in the metric space of course). It is totally

bounded if for any ε > 0 it has a finite covering by open balls of side ε. A metric space is

complete if every Cauchy sequence converges.

It is a theorem that a metric space is compact if and only if it is complete and totally bounded.

A metric space is compact if and only if it is sequentially compact.

A subset of a metric space is relatively compact if it is sequentially compact (the limit may

not need to belong to the subset).

If {xn} is sequentially compact with common limit, then it must converges. Suppose the

limit is x̄. If xn 6→ x̄, then there exists ε > 0 such that for any k, there exists nk > k, with

d(xnk , x̄) >≥ ε. No subsequence of {xnk} would converge to x̄! Hence the contradiction.

10.3.1 Borel measures and approximations

One nice property of the metric space is the fact that any Borel probability measure µ on it is

regular: if A is a Borel set then

µ(A) = sup{µ(F ) : F ⊂ A and F is closed} = inf{µ(U) : A ⊂ U and U is open}.

Theorem 10.3.1 Let µ and ν be two probability measures on a metric space such that∫
fdµ =

∫
fdν

for every bounded uniformly continuous function f on X , then µ = ν.

Theorem 10.3.2 Let 1 ≤ p < ∞ and µ a probability measure on a metric space. The set,

Cc(X ), of continuous functions with compact support, is dense in Lp(X ).

Theorem 10.3.3 (Lusin’s Theorem) Let µ be a probability measure on a metric space X and

f : X → R is a measurable function that vanishes outside of a set of full measure. Then for any

ε > 0, there exists a continuous function ϕε with compact support such that ϕε agree with f on

a set of measure 1− ε. If f is bounded we can choose ϕε with |ϕε|∞ ≤ |f |∞.

Theorem 10.3.4 If f is lower semi-continuous and non-negative, e.g. the indicator function

of an open set, and µ a probability measure, then∫
fdµ = sup

{∫
ϕdµ : 0 ≤ ϕ ≤ f, ϕ ∈ Cc(X )

}
.
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10.3.2 On a compact metric space

A linear functional on C(X ) is a linear map L : C(X)→ R, it is said to be positive if L(f) ≥ 0

whenever f ≥ 0.

Theorem 10.3.5 Let X be a compact metric space and L a positive linear functional on X with

the property that L(1) = 1. Then there exists a unique Borel probability measure µ on X such

that L(f) =
∫
fdµ for all f ∈ C(X ).

10.3.3 On a separable metric space

If X is a separable metric space, there exists a countable family of open sets C such that every

open set is the union of sets from C, in particular B(X ) = σ(C).

Definition 10.3.6 If X is a separable metric space, then for any probability measure on X

there exists a closed set A such that A is the smallest closed set of full measure. Furthermore

A is the set of points with the property that any open set containing it has positive measure.

This set is called the support of µ.

The topology of weak convergence on P(X ) has the following neighbourhood basis. For any

finite set of continuous functions {ϕi, i = 1, . . . , n}, any n ∈ N and ϕi ∈ Cb(X ), and µ0 ∈ P(X ),{
µ ∈ P(X ) :

∣∣∣∣∫ ϕidµ−
∫
ϕidµ0

∣∣∣∣ ≤ ε,∀ϕi}.
Proposition 10.3.7 Let X be a complete separable metric space. Then we can construct an

equivalent metric on X such that there exists a sequence of bounded uniformly continuous func-

tions {ϕk} with the following property: for any sequence of probability measures µn, µn converges

to µ weakly if and only if
∫
ϕkdµn →

∫
ϕkdµ for every k.

10.3.4 On a complete separable metric space

If X1, X2 are complete separable metric spaces and ϕ : X1 → X2 a one to one measurable map

then the image of a Borel subset of X1 by ϕ is a Borel subset of X2.

Theorem 10.3.8 Every probability measure on a complete separable metric space is tight.

Proposition 10.3.9 Let P (X ) denotes the space of probability measures on a metric space X .

1. The space P (X ) with the weak topology, is metrizable as a separable metric space if and

only if X is a separable metric space.
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2. If X is a separable metric space, then P (X) is complete as a topological space if and only

if X is complete.

3. Also, P (X ) is compact if and only if X is.

For further reading we refer to the brilliant book by K. R. Parthasarathy.

10.3.5 Measures on C

A special interesting space for those working with stochastic processes with continuous time

and with sample continuous paths is the space of continuous functions with the uniform norm

over a set X is an infinite dimensional space. The unit ball in a metric space is compact if

and only if the space if finite dimensional. A subset of C(X ) is compact if and only if it is

totally bounded and equi-continuous. This follows from the Arzela-Ascoli theorem that states:

if a family of continuous functions are bounded and equi-continuous, then it has a uniformly

convergent sub-sequence.

Definition 10.3.10 A subset A of C(X ) is said to be equicontinuous at a point x if for any

ε > 0 there exists a > 0 such that

|f(y)− f(x)| ≤ ε

for every f ∈ A and for every y ∈ Ba(x).

Proposition 10.3.11 Let X be a separable metric space and µn be any sequence of probability

measures on X . Then µn → µ weakly if and only if

lim
n→∞

sup
f∈A

∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ = 0

for every family A ⊂ C(X ) which is equi-continuous at all points of X and uniformly bounded.

Proposition 10.3.12 A subset A of C([0, 1]; R) is relatively compact it is sufficient and neces-

sary that the following two conditions are satisfied:

1. supx∈A |x(0)| <∞

2.

lim
δ→0

sup
x∈A

ωx(δ) = 0,

where ωx(δ) = sup|s−t|<δ |x(s)− x(t)|.

Theorem 10.3.13 Let M be a family of probability measures on C([0, 1]; R). Then M is

compact if and only if the following conditions are satisfied. For any ε > 0 there exists a number

M and a function λ : R+ → R+ which decreases to zero (M and λ may depend on ε),
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(1) such that

µ(x ∈ C : |x(0)| ≤M) ≥ 1− ε, ∀µ ∈M;

(2)

µ({x : ωx(δ) ≤ λ(δ) for all δ}) > 1− ε; ∀µ ∈M.

Theorem 10.3.14 Let A be a family of probability measures on C([0, 1]; R). Then A is compact

if and only if the following conditions are satisfied.

(1) For any ε > 0 there exists a number M such that

µ(x ∈ C : |x(0)| ≤M) ≥ 1− ε, ∀µ ∈M

(2’) For any ε > 0 and δ > 0 there exist a number η > 0 (which may depend on ε and δ) such

that

µ
(
{x : ωx(η) ≤ δ}

)
> 1− ε, ∀µ ∈M.

Let µ1, µ2, . . . be a sequence of measures on a topological space X . We say that the sequence

converges weakly to a limit µ if

lim
n→∞

∫
X
f(x)µn(dx) =

∫
X
f(x)µ(dx) , (10.5)

for every f ∈ Cb(X ). We say that it converges strongly if (10.5) holds for every f ∈ Bb(X ).

10.4 The total variation norm

We define the total variation norm on the set of finite signed measures to be

‖µ‖TV = 2 sup
A∈B(X )

‖µ(A)‖.

Let µ+ and µ− are the measures in its Jordan-Hahn decomposition: µ = µ+ − µ−. Define the

measure |µ|(A) = µ+(A) + µ−(A). We also define the norm:

‖µ‖ = µ+(X ) + µ−(X ) = |µ|(X ).

We are primarily interested in the difference between two probability measures which is a signed

finite measure with µ(X ) = 0. For such measures the two norms are the same.

Proposition 10.4.1 If µ is a finite signed measure with µ(X ) = 0, then

‖µ‖TV = |µ|(X ).
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Proof. To see this, first note that if µ(X ) = 0 then µ+(X ) = µ−(X ). Then letting X = X+ +X−

be the Hahn decomposition of X , we have

‖µ‖ := µ+(X+) + µ−(X−) = 2µ+(X+),

and

‖µ‖TV ≥ 2µ+(X+) = ‖µ‖.

On the other hand one has

µ(A) = µ(A ∩ X+) + µ(A ∩ X−) = µ+(A ∩ X+)− µ−1(A ∩ X−) ≤ µ+(X+) =
1

2
‖µ‖,

µ(A) ≥ −µ−1(A ∩ X−) ≥ −µ−(X−) = −1

2
‖µ‖,

and so 2µ(A)| ≤ ‖µ‖ for every measurable set A and ‖µ‖TV = 2 supA |µ(A)| ≤ ‖µ‖ concluding

|µ‖TV = |µ|(X ).

Proposition 10.4.2 If µ is a finite signed measure, then

‖µ‖TV = sup
f∈Bb(X )

‖f‖∞=1

∣∣∣∫
X
f(x)µ(dx)

∣∣∣ , (10.6)

where the maximum is run over bounded measurable functions.

Proof. Firstly take the decompositions µ = µ+ − µ− and X = X+ ∪ X− with µ−(X+) = 0 and

µ+(X−) = 0. Then,

sup
f∈Bb(X )

‖f‖∞=1

∣∣∣∫
X
f(x)µ(dx)

∣∣∣ ≥ ∫
X

(1X+ − 1X−)dµ = µ(X+) + µ−(X−) = ‖f‖TV .

Also for any measurable f with ‖f‖∞ ≤ 1,∫
X
f(x)µ(dx) =

∫
X+

f(x)µ+(dx)−
∫
X−

f(x)µ−(dx) ≤
∫
X+

1µ+(dx)−
∫
X−

(−1)µ−(dx) = ‖µ‖TV .

Similarly, ∫
X
f(x)µ(dx) ≥ −‖µ‖TV .

And
∣∣∣∫X f(x)µ(dx)

∣∣∣ ≤ ‖µ‖TV for all such f , concluding the proof.

This also agrees’s with Rudin’s definition:

Proposition 10.4.3 If µ is a finite signed measure, then

‖µ‖TV = sup
π

∑
A∈π
|µ(A)|

where π is a partition of the σ-algebra.
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Proof. Firstly for each π,∑
A∈π
|µ(A)| =

∑
A∈π
|µ(A ∩ X+)− µ(A ∩ X+)| ≤ µ(X+) + µ(X−).

Then we see the partition {X+,X−} maximise the quantity:∑
A∈{X+,X−}

|µ(A)| ≥ µ(X+) + µ(X−) = ‖µ‖TV .

10.5 Examples

Example 10.5.1 The interval [0, 1] equipped with its Borel σ-algebra and the Lebesgue measure

is a probability space.

Example 10.5.2 The half-line R+ equipped with the measure

P(A) =

∫
A
e−x dx

is a probability space. In such a situation, where the measure has a density with respect to

Lebesgue measure, we will also use the short-hand notation P(dx) = e−x dx.

Example 10.5.3 Given a ∈ Ω, the measure δa defined by

δa(A) =

{
1 if a ∈ A,

0 otherwise.

is a probability measure.

10.6 Proof of Prohorov’s theorem

Theorem 10.6.1 (Prohorov) A sequence of probability measures on a complete separable met-

ric space X is relatively compact if and only if it is tight.

In order to prove this theorem, we need the following little lemma, which is a special case of

Tychonoff’s theorem:

Lemma 10.6.2 Let {xn} be a sequence of elements in [0, 1]∞. Then, there exists a subsequence

nk and an element x ∈ [0, 1]∞ such that limk→∞ xnk(i)→ x(i) for every i.
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Proof. Since [0, 1] is compact, there exists a subsequence n1
k and a number x(1) ∈ [0, 1] such that

limk→∞ xn1
k
(1) → x(1). Similarly, there exists a subsequence n2

k of n1
k and a number x(2) such

that limk→∞ xn2
k
(2)→ x(2). One can iterate this construction to find a family of subsequences

nik and numbers x(i) such that

• xnik is a subsequence of xni−1
k

for every i.

• limk→∞ xnik
(i)→ x(i) for every i.

It now suffices to define nk = nkk. The sequence nk obviously tends to infinity. Furthermore, for

every i, the sequence {xnk(i)}k≥i is a subsequence of {xnik(i)}k≥0 and therefore converges to the

same limit x(i).

Proof of Prohorov’s theorem. We only give a sketch of the proof and only consider the case

X = R. Let ri be an enumeration of Q and write Fn for the distribution function of µn,

i.e. Fn(x) = µn((−∞, x]). Note that Fn is automatically right-continuous since (−∞, x] =⋂
k>0(−∞, xk] for every sequence xk converging to x from above. (It is not left-continuous in

general since if xk is a sequence converging to x from below, one has
⋃
k>0(−∞, xk] = (−∞, x)

which is not the same as (−∞, x]. As a generic counterexample, consider the case µ = δ and

x = 0.) Note that the right-continuity of Fn and the density of the points ri together imply that

one has Fn(x) = inf{Fn(ri) | ri > x} for every x. In other words, the values of Fn at the points

ri are sufficient to determine Fn.

Note furthermore that Fn(x) ∈ [0, 1] for every n and every x since we are considering

probability measures, so that we can associate to every function Fn an element F̃n in [0, 1]∞

by F̃n.i = Fn(ri). Since [0, 1]∞ is compact, there exists a subsequence F̃nk and an element

F̃ ∈ [0, 1]∞ such that limk→∞ F̃nk,i = F̃i for every i. Define a function F : R → [0, 1] by

F (x) = inf{F̃i | ri > x} for every x ∈ R. Then the function F has the following properties:

1. F is increasing.

2. F is right-continuous.

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

The first and second claims follows immediately from the definition of F . Since the sequence of

measures {µn} is tight by assumption, for every ε > 0 there exists R > 0 such that Fn(R) ≥ 1−ε
and Fn(−R) ≤ ε for every n. Therefore F satisfies the same equalities so that the third claim

follows, so that F is the distribution function of some probability measure µ.

We now show that if F is continuous at some point x, then one actually has Fnk(x)→ F (x).

The continuity of F at x implies that, for every ε > 0, we can find rationals ri and rj such that

ri < x < rj and such that F̃i > F (x) − ε and F̃j < F (x) + ε. Therefore, there exists N such

that F̃nk,i > F (x)− 2ε and F̃nk,j < F (x) + 2ε for every k ≥ N . In particular, the fact that the

functions Fn are increasing implies that |Fnk(x)−F (x)| ≤ 2ε for every k ≥ N and so proves the
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claim.

Denote now by S the set of discontinuities of F . Since F is increasing, S is countable. We

just proved that µnk((a, b]) → µ((a, b]) for every interval (a, b] such that a and b do not belong

to S. Fix now an arbitrary continuous function ϕ : R → [−1, 1] and a value ε > 0. We want

to show that there exists an N such that
∣∣∫ ϕ(x)µnk(dx)−

∫
ϕ(x)µ(dx)

∣∣ < 7ε for every k ≥ N .

Choose R as above and note that the tightness condition implies that∣∣∣∫ ϕ(x)µnk(dx)−
∫ R

−R
ϕ(x)µnk(dx)

∣∣∣ ≤ 2ε , (10.7)

for every n. The same bound also holds for the integral against µ. Since ϕ is uniformly continous

on [−R,R], there exists δ > 0 such that |ϕ(x)− ϕ(y)| ≤ ε for every pair (x, y) ∈ [−R,R]2 such

that |x− y| ≤ δ. Choose now an arbitrary finite strictly increasing sequence {xm}Mm=0 such that

x0 = −R, xM = R, |xm+1 − xm| ≤ δ for every m, and xm 6∈ S for every m. Define furthermore

the function ϕ̃ : on (−R,R] by ϕ̃(x) = xm whenever x ∈ (xm, xm+1]. Since ϕ̃ is a finite linear

combination of characteristic functions for intervals of the form considered above, there exists

N such that
∣∣∫ R
−R ϕ̃(x)µnk(dx) −

∫ R
−R ϕ̃(x)µ(dx)

∣∣ < ε for every k ≥ N . Putting these bounds

together yields∣∣∣∫ ϕ(x)µnk(dx)−
∫
ϕ(x)µ(dx)

∣∣∣ ≤ ∣∣∣∫ ϕ(x)µnk(dx)−
∫ R

−R
ϕ(x)µnk(dx)

∣∣∣
+
∣∣∣∫ ϕ(x)µ(dx)−

∫ R

−R
ϕ(x)µ(dx)

∣∣∣+
∣∣∣∫ R

−R
ϕ̃(x)µnk(dx)−

∫ R

−R
ϕ(x)µnk(dx)

∣∣∣
+
∣∣∣∫ R

−R
ϕ̃(x)µ(dx)−

∫ R

−R
ϕ(x)µ(dx)

∣∣∣+
∣∣∣∫ R

−R
ϕ̃(x)µnk(dx)−

∫ R

−R
ϕ̃(x)µ(dx)

∣∣∣
≤ 2ε+ 2ε+ ε+ ε+ ε ≤ 7ε ,

for every k ≥ N , thus concluding the proof.

10.7 Useful References

• Real Analysis by Royden, Chapter 11 (especially section 3) in the third edition for inte-

gration.

• Probability by Leo Breiman, Conditional Expectation is in Chapter 4.

• Probability measures on metric spaces, K. R. Parthasarathy.

• Foundations of modern probability, O. Kallenberg

• Markov Chains and Stochastic Stability by Meyn and Tweedie

• Markov Chain by J. Norris
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