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For a compact Riemannian manifold the space L2A of L2 differential forms de-
composes into the direct sum of three spaces, the Hodge decomposition,

L2A = Imd⊕ Imd∗ ⊕H

where d stands for exterior differential, d∗ its adjoint and H the space of L2 har-
monic differential forms. This decomposition identifies the space of harmonic forms
with de Rham cohomology groups, which are in this case topological invariants. If
M is a noncompact finite dimensional complete Riemannian manifold, the above
decomposition holds with a modification. From it information on the geometry and
sometimes the topology of the underlying spaces can be obtained. In this paper we
shall be concerned with manifolds of continuous paths over complete Riemannian
manifolds M , of which Wiener space is an example. Here we consider only L2 theory.
This paper is based on [1] and [2]. For works related to smooth cohomologies please
see the series of papers by Léandre, e.g. [3], [4].

For T > 0, let Cx0M stand for the space of continuous paths σ : [0, T ] → M
starting from a fixed point x0 in M . As functions interesting to us, such as stochastic
integrals, are not smooth functions we are forced to consider H-derivatives when
differentiations are concerned and thus the concept of linear forms on H-vectors,
the so called H-forms, needs to be introduced. Analysis on Wiener space Ω in the
sense of Malliavin Calculus relies on a Hilbert subspace, the Cameron Martin space
L2,1

0 of the Banach space Ω. The Hodge decomposition for Wiener space has been
obtained by Shigekawa [5] for H-forms. Results are also obtained for Lie groups
by Fang and Franchi [6]. Arai and Mitoma have generalized Shigekawa’s work on
Hodge decomposition theorem in [7] and [8], but still in the context of linear spaces.

For path spaces, the role of Cameron-Martin space is replaced by ‘Bismut tangent
spaces’, for σ ∈ Cx0M ,

H1
σ =: {//σk | k ∈ L2,1

0 (Tσ0M)}.

Here //σ stands for parallel translations along σ using the Levi-Civita connection on
M . The use of different connections induces different spaces H1

σ. Write H1 for the
Hilbert bundle with fibres H1

σ. One technical difference between the Wiener space
and the more general path spaces is that H1 is not in general an integrable bundle.
In another word given two H1 valued vector fields, their Lie bracket may not lie in
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H1, a fact which has been observed by many people. In [9] Driver has given explicit
calculations of Lie brackets of H1-valued vector fields.

Let φ be a smooth differential form on Cx0M . Its exterior derivative is given by

dφ(u ∧ v) = Lu(φ(v))− Lv(φ(u))− φ([u, v]).

Here L stands for Lie differentiation and [u, v] the Lie bracket of the vector fields u
and v. Denote by ΓH1 the space of sections of H1. If φ were not a smooth form,
e.g. φ = df for df the H-derivative of a function f then dφ is not defined by this
formula when [u, v] does not belong to ΓH1.

In [1] we have introduced a series of Hilbert spaces Hq
σ of q-vectors. Let

X : M ×Rm → TM be a surjective bundle map, inducing the Riemannian metric
on M . For convenience we shall assume from now on M is compact and that the
linear connection induced by X, as in [10], is the Levi-Civita connection on M .
The example to have in mind is when X is given by an isometric immersion of M
to Rm and X(x)(e), e ∈ Rm is the orthogonal projection of e to TxM . Consider
the canonical probability space over Rm and denote by (Bt) the canonical Brownian
motion. Let (xt(ω): 0 ≤ t ≤ T, ω ∈ Ω) be the solution to the Stratonovich stochastic
differential equation

dxt = X(xt) ◦ dBt (1)

on M starting from x0. It gives rise to an Itô map:

I : C0 (Rm) → Cx0M,

by I(ω)t = xt(ω) and a measure µx0 on the path space. The Itô map has H-
derivatives which shall be denoted by TI(−). Set

Hq
σ = {E{∧qTI(h) | x· = σ}

∣∣ h ∈ ∧qL2,1
0 (Rm)} (2)

Equip Hq
σ with the induced Hilbert space structure. In fact H1

σ agrees with H1 as a
linear space but has a different Hilbert space structure.

Let us take a short hand notation f̄ for the conditional expectation of a random
variable f with respect to σ{xs, 0 ≤ s ≤ T}. So (2) reads:

Hq
σ =

{
∧qTIσ(h) | h ∈ ∧qL2,1

0 (Rm)
}

(3)

If Ric, R2 and R are respectively the Ricci curvature, Weitzenbock curvature on
two-vectors and the curvature tensor let Wt : Tx0M → TxtM and W

(2)
t : ∧2Tx0M →

∧2TxtM be respectively solutions to the covariant differential equations along the
paths of {xs : 0 ≤ s ≤ T}{

D
dt

Wt(v) = −1
2
Ric#(Wt(v))

W0(v) = v, v ∈ Tx0M

and {
D
dt

W
(2)
t (u) = −1

2
R2(W

(2)
t (u))

W
(2)
0 (u) = u, u ∈ ∧2Tx0M.
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Here D
dt

= //t
d
dt

//−1
t in the first instance and D

dt
= ∧2//t

d
dt
∧2 //−1

t in the second.
In [2] it was shown that

H2
σ = {(I + Qσ)(v) | v ∈ ∧2H1

σ}

where I is the identity map and

Qσ(v)s,t = (1⊗W s
t ) W (2)

s

∫ s

0

(W (2)
r )−1Rσr(vr,r) dr. (4)

Here as below we shall liberally identify 2-vector fields on Cx0M with continuous
maps from [0, T ]2 → ⊗2TM . Similarly vectors in H3

σ can be obtained from vectors
in ∧3H1

σ by an explicit map involving Qσ and the Weitzenbock curvature for three
vectors. In particular H1

σ,H2
σ,H3

σ are independent of the map X which induces
them. They depend only on the Riemannian structure of M . Furthermore for
f : Ω → ∧2L2,1

0 (Rm) (satisfying certain mild condition), not necessarily adapted to
σ{xs : 0 ≤ s ≤ T}, ∧2TI(f) is an L2 section of tσH2

σ by concrete calculations.
As a consequence ∧2TI(−) sends elements of L2 k-particle spaces to L2 sections of
tσH2

σ. Let L2ΓHq and L2ΓHq∗ stand respectively for L2 sections of tHq
σ and tHq

σ
∗.

Example. Consider the symmetric space (K, H, σ). Set M = K/H and consider
an adK-invariant inner product on the Lie algebra k of the Lie groups K invariant
under σ. Identify k with Rm for m = dimk. Define X by the derivative of the action
of K on M . It can be shown that ∧2TI(−) induces a continuous linear map from

L2(C0(R
m);∧2L2,1

0 (k)) → L2ΓH2.

The pull back map I∗ extends to a continuous map

I∗ : L2ΓH2∗ → L2(C0(R
m);∧2L2,1

0 (k)∗).

The exterior differential operator. Let dq be the exterior differential operator on
smooth differential q forms. For q = 1, 2 let Dom(dq) ⊂ L2ΓHq∗ be the space of
smooth cylindrical differential q-forms on Cx0M . Consider d as an operator from
Dom(dq) to L2ΓHq+1∗. By a cylindrical differential q-form on Cx0M we mean a
differential q-form of the following form: for some 0 ≤ t1 ≤ t2 ≤ . . . ≤ tq ≤ T ,

φ(V ) = θ(Vt1,...,tq), V ∈ ∧qTCx0M

where θ is a Cr q-form on the q-fold product

q︷ ︸︸ ︷
M × . . .×M . It can be shown that

the domain of d1∗ contains all smooth cylindrical forms and that smooth cylindrical
2-forms are dense in L2ΓH2∗ just as cylindrical 1-forms are dense in L2ΓH1∗.

Finally we state the decomposition theorem. From the above discussion we see
that d is a densely defined operator.
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Theorem 0.1 [2] Let d be the exterior differential operator on smooth differential
forms. The operator d from Dom(d) in L2Γ(H2∗) to L2Γ(H3∗) is closable with
closure a densely defined operator d̄,

d̄ : Dom(d̄) ⊂ L2Γ(H2∗) → L2Γ(H3
·
∗
)

Theorem 0.2 [2]

L2ΓH2∗ = (ker d ∩ kerd∗)⊕ Im(d)⊕ Im(d∗).

The role played by Q can be seen by the following identity:

div(Q(v1 ∧ v2)) = −T (v1, v2) (5)

for suitbale adapted v1 and v2 in ΓH1. Here T is the torsion for the ”damped
Markovian” connection used by Cruzeiro and Fang in [11]. This connection can be
identified with the connection on H1 induced by TI in the sense of [10]. One also
notes that the part of [v1, v2] which is not in ΓH1 is contained in T (v1, v2). Note
that (4) fits in with an observation of Cruzeiro-Fang [11] that div(T (v1, v2)) = 0 for
a certain class of adapted vector fields v1, v2.
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[3] R. Léandre. Cohomologie de Bismut-Nualart-Pardoux et cohomologie de
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