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1. Introduction

Let N be a finite or infinite dimensional manifold, µ a probability measure, d
an differential operator with domain a subspace of the the L2 space of functions
which restricted to differentiable functions is the usual differentiation operator.
Let d∗ be its L2 adjoint with respect to this measure. We ask whether the operator
L = −d∗d has a spectral gap. If∇ is the gradient operator associated to d through
Riesz representation theorem, in the case that we have a Hilbert space structure,
this is equivalent to a Poincaré inequality

∫
N

(f−f̄)2µ(dx) 6 1
λ1

∫
N
|∇f |2µ(dx),

where f ranges through an admissible set of real valued functions on a space N .
IfN is a compact closed Riemannian manifold, dx the volume measure and∇ the
Riemannian gradient operator, the best constant in the Poincaré inequality is given

by taking infimum of the Raleigh quotient
R
N
|df |2dxR
N
f2dx

over the set of non-constant
smooth functions of zero mean and is the spectral gap for the Laplacian operator,
its first non-trivial eigenvalue. The operator concerned is given by the gradient
operator and depend on the measure µ. Poincaré inequality does not hold for Rn

with Lebesgue measure, it does hold for the Gaussian measure. For the standard
normalised Gaussian measure and ∇ the gradient operator in Malliavin calculus,
the Poincaré constant is 1 and the corresponding eigenfunction of the Laplacian
is the Hermitian polynomial x/2. If h is a smooth function µ a measure which is
absolutely continuous with respect to the Lebesgue measure with density e−2h,
for any f in the domain of d,∫

N

|df |2(x)µ(dx) = −
∫
N

〈f,∆f〉(x)µ(dx)− 2
∫
N

f〈df, dh〉µ(dx).

The corresponding Poincaré inequality is then related to the Bismut-Witten Lapla-
cian ∆h := ∆ + 2L∇h on L2(M, e−2hdx), which is unitarily equivalent to
�h = ∆ + (|dh|2 + ∆h) on L2(M,dx). The spectral property of ∆h, hence
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the validity of the Poincaré inequality for µ is determined by the spectral property
of the Schrödinger operator �h on L2(M ; dx).

Let M be a smooth finite dimensional Riemannian manifold which is stochas-
tically complete. Fix a number T > 0. The path space on M based at x0 is:

Cx0M = {σ : [0, T ]→M,σ(0) = x0| σ is continuous}.

For y0 ∈M , we define the subspaces

Cx0,y0M = {σ ∈ Cx0M | σ(T ) = y0}, Lx0M = {σ ∈ Cx0M |σ(T ) = x0}.

In this article our state space would be the loop space Lx0M endowed with
the Brownian Bridge measure. In the case of the Wiener space, the Brownian
Bridge measure µ0,0 is the law of the Brownian bridge starting and ending at 0,
one of whose realisation is Bt − t

T BT . It can also be realised as solution to the
time-inhomogeneous stochastic differential equation dxt = dBt − xt

T−tdt. The
Brownian bridge measure is a Radon Gaussian measure and Gaussian measure
theory applies to give the required the Poincaré inequality. In fact the stronger
Logarithmic Sobolev inequality holds:∫

f2 log
f2

E|f |2
µ(dx) 6 2

∫
|∇f |2µ(dx).

This however may not hold in general. In fact as noted by L. Gross? Poincaré
inequalities do not hold on the Lie group S1 due to the lack of connectedness of
the loop space. Following that A. Eberle? gave an example of a compact simply
connected Riemannian manifold on which the Poincaré inequality does not hold .

There are two standard arguments to prove the spectral gap theo-
rem. The first argument applies to a compact state manifold N where
inff∈H1,|f |L2=1,

R
f=0

∫
M
|∇f |2dx is attained, by a non-constant function, due

to the Rellich-Kondrachov compact embedding theorem of H1,q into Lp. The
other approach is the dynamic one which applies to Gaussian measures, due to
the commutation relation. Namely we consider a Markov process with semigroup
Pt, a finite invariant measure e2hdx (finiteness holds if inf |v|=1{Ricx(v, v) −
2Hessx(h)(v, v)} is strongly stochastically positive?), and generator 1

2∆ +∇h.
Suppose that |dPtf | ≤ 1

ρ |df |, then∫
M

(f − f̄)2dµ =
∫
M

(
f2 − f̄2

)
dµ = lim

t→∞

∫
M

(f2 − (Ptf)2)(x)dµ(x)

= − lim
t→∞

∫
M

∫ t

0

∂

∂s
(Psf)2ds dµ = lim

t→∞

∫ t

0

∫
M

(dPsf)2 dµ ds

=
∫ ∞

0

∫
M

(dPsf)2 dµ ds ≤ 1
ρ

∫
M

|df |2(x) dµ.



November 20, 2009 21:34 WSPC - Proceedings Trim Size: 9in x 6in Spectral-Hyperbolic

3

In particular there is a Poincaré inequality if the Bakry-Emery condition Ricx −
2Hessx(h) > ρ > 0 holds. The dynamic argument can be modified leading to the
beautiful Clark-Ocone formula approach,?,? However none of these approaches
seems to work well for the Brownian bridge measure on a general path space.
The main problem comes down to estimates on the heat kernel. However we do
have one positive result for non-flat spaces: if M is the hyperbolic space we have
indeed a spectral gap.? But it remains an open question whether the Logarithmic
Sobolev inequality holds.

2. The Spectral Gap Theorem

A. Denote by Cyl the set of smooth sylindrical functions on Cx0M ,

Cylt = {F |F (σ) = f(σs1 , . . . , σsk), f ∈ C∞K (Mk), 0 < s1 < · · · < sk 6 t < T}.

The Brownian bridge measure µx0,y0 is defined through integration of F ∈ Cyl,

pT (x0, y0)
∫
Cx0M

f(σs1 , . . . , σsn)dµx0,x1(σ)

=
∫
Mn

f(x1, . . . , xn)ps1(x0, x1) . . . psn−sn−1(xn−1, xn)pT−sn(xn, y0)Πn
i=1dxi.

This cylindrical measure extends to a real measure if for some constants β > 0

and δ > 0,∫ ∫
d(y, z)β

ps(x0, y)pt−s(y, z)pT−t(z, y0)
PT (x0, y0)

dydz 6 C|t− s|1+δ. (1)

Throughout this article we shall assume the hear kernel satisfies the above inequal-
ity? and a number of assumptions, all of which hold true on the hyperbolic space,?

we shall assume. See? for detail.
We now define the gradient operator. Take the levi-Civita connection∇, whose

parallel translation along a path σ is denoted by //·. Define the tangent sub-space
Hσ = {//sks : k ∈ L2,1

0 (Tx0M)}, to TσCx0M which we call the Bismut tangent
space with Hilbert space norm induced from the Cameron Martin space. We iden-
tify Tx0M with Rn. Let µ be a probability measure on Cx0M including measures
which concentrates on a subspace e.g. the loop space. The differential operator
d, which restricts to differential functions is the usual exterior derivative from the
space of L2 functions to the space of L2 H-valued 1-forms, is closable whenever
Driver’s integration by parts formula holds,? which we assume hold true. We de-
fine ID1,2 ≡ ID1,2(Cx0M) to be the closure of smooth cylindrical function Cylt,
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t < T under this graph norm:√∫
Cx0M

|∇f |2Hσ (σ)µ(dσ) +
∫
f2(σ)dµ(σ)

and this is the domain of the corresponding gradient defined by: df(V ) =
〈∇f, V 〉H .

B. In Aida? it was shown that forM the standard hyperbolic space, of constant
negative curvature −1.∫

Cx0H
n

f2 log
f2

log |f |2L2

dµx0,y0(γ) 6
∫
Cx0H

n

C(γ)|∇f |2dµx0,y0(γ) (2)

forC(γ) = C1(n)+C2(n) sup06t61 d
2(γt, y0). To obtain thisPoincaré inequality

with modified Dirichlet form, he first proved an integration by parts formula from
which a Clark-Ocone formula of the form:

Eµx0,y0{F |Gt} = Eµx0,y0F +
∫ t

0

〈Hs(γ), dWs〉,

where Wt is the martingale part of the anti-development of the Brownian bridge
and

H(s, γ) = Eµx0,y0 {L(γ)
d

ds
∇F (γ)(s)|Gs}

almost surely with respect to the product measure dt ⊗ µx0,y0 . Here Gt is the
filtration generated by Ft and the end point of the Brownian bridge. Unlike the
case for Gaussian measures or for the Brownian motion measures, the function L
in the Clark-Ocone formula is not a deterministic function, which underlines why
the Clark-Ocone approach itself is not good enough to give the required inequality.

Theorem 2.1. Let M = Hn, the hyperbolic space of constant curvature −1.
Then Poincaré inequality holds for the Brownian bridge measure µx0,x0 .

The proof of the theorem is based on Lemmas ?? and ??, (??) and that∫
Cx0M

eCd
2(σ,y0)dµx0,y0(σ) <∞.

C. The Laplace Beltrami operator on a complete Riemannian manifold may
not have a spectral gap. But it has always a local spectral gap, by restriction to
an exhausting relatively compact open sets Un. The constant λ1 may blow up
as n goes to infinity. Once a blowing up rate for local Poincaré inequalities are
obtained, we arrived at ‘weak Poincaré inequalities’ and in the case of Entropy
the ‘weak Logarithmic Sobolev inequalities’:
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Var(f) 6 α(s)
∫
|∇f |2dµ+ s|f |2∞,

Ent(f2) 6 β(s)
∫
|∇f |2dµ+ s|f |2∞.

Here Varf denoted the variance E(f − Ef)2 of a function f and Ent(f) its
entropy Ef log f

Ef by Ent(f), α and β are non-decreasing functions from (0,∞)
to R+. We first state the following estimate:

Lemma 2.1. Let µ be any probability measure on Cx0M with the property that
there exists a positive function u ∈ ID1,2 such that Aida’s type inequality holds:

Ent(f2) 6
∫
u2|∇f |2dµ, ∀f ∈ ID1,2 ∩ L∞ (3)

Assume furthermore that |∇u| 6 a and
∫
eCu

2
dµ <∞ for some C, a > 0. Then

for all functions f in ID1,2 ∩ L∞

Ent(f2) 6 β(s)
∫
|∇f |2dµ+ s|f |2∞, (4)

where β(s) = C| log s| for s < r0 where C and r0 are constants.

D. Functional inequalities describes how the L2 norms of a function is con-
trolled by the homogeneous H1 norm and possibly the L∞ norm in the case of
weak type inequalities. They describe the concentration phenomenon of the mea-
sure. On the other hand concentration inequalities are related with isoperimetric
inequalities. For example let h = infA

µ(∂A)
min{µ(A),µ(N/A)} where the infimum is

taken over all open subsets of N . Then h2 6 4λ1 by Cheeger.? On the other hand
if K is the lower bound of the Ricci curvature, λ1 6 C(

√
Kh+ h2),? See also,??

and.?

For finite dimensional spaces it was shown in? and? one can pass from capacity
type of inequalities to weak Logarithmic Sobolev inequalities and vice versa with
great precision. Although they did not phrase the theorem in terms of Malliavin
calculus, most of their results work in infinite dimensional spaces and in particular
the following lemma will transforms our estimates on the blowing up rate of the
logarithmic Sobolev inequality into a spectral gap result .

Lemma 2.2. If for all f bounded measurable functions in ID2,1(Cx0M), the weak
logarithmic Sobolev inequality holds for 0 < s < r0, some given r0 > 0,

Ent(f2) 6 β(s)
∫
|∇f |2dµ+ s|f |2∞
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where β(s) = C log 1
s for some constant C > 0, Then Poincaré inequality

Var(f) 6 α
∫
|∇f |2dµ.

holds for some constant α > 0.
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12. Elworthy, K. D. and Li, X.-M. Itô maps and analysis on path spaces. Math. Z. 257
(2007), no. 3, 643–706.
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