JOURNAL OF FUNCTIONAL ANALYSIS 125, 252-286 (1994)

Formulae for the Derivatives of Heat Semigroups
K. D. ELWORTHY aAND X.-M. Li*

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
Communicated by Paul Malliavin

Received September 1993

Formulae for the derivatives of solutions of diffusion equations are derived which
clearly exhibit, and allow estimation of, the equations’ smoothing properties. These
also give formulae for the logarithmic gradient of the corresponding heat kernels,
extending and giving a very elementary proof of Bismut's well known formula.
Corresponding formulae are derived for solutions of heat equations for differential
forms and their exterior derivatives. '© 1994 Academic Press, Inc.

1. INTRODUCTION

Let M be a smooth manifold. Consider first a non-degenerate stochastic
differential equation,

dx,= X(x,)odB,+ A(x,) i, (1)

on M with smooth coefficients 4, X, where {B,:t>0} is a R™-valued
Brownian motion on a filtered probability space {2, #, %, P}. Let P, be
the associated sub-Markovian semigroup and & the infinitesimal generator,
a second-order elliptic operator. In [6] a formula for the derivative
d(P,f),, (vy), of P, f at x, in direction v, of the form

1 t
d(P. f) (vo)=;Ef(x,)f0 vy, X(x,) dB,) (2)

was given, where v, is a certain stochastic process starting at v,. The pro-
cess v, could be given either by the derivative flow of (1) or in terms of a
naturaly related curvature. In the latter case and when s = 14,, for some
Riemannian structure, the formula reduces to one obtained by Bismut in
[1] leading to his well-known formula for V log p,(x, y), the gradient of the
logarithm of the fundamental solution to the heat equation on a Riemannian
manifold. Bismut’s proof is in terms of a Malliavin calculus while the
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proofs suggested in [6] following the approach of Elliott and Kohlman
[4] are very clementary. However, there the results were actually given for
a compact manifold as a special case of a more general result which needed
some differential geometric apparatus. Here we show that the formula
holds in a more general context, extend it to higher derivatives, and give
similar formulae for differential forms of all orders extracted from [13]. In
particular, we have a simple proof of the formulae for somewhat more
general stochastic differential equations.

One importance of these formulae is that they demonstrate the smooth-
ing effect of P,, showing clearly what happens at t=0. To bring out the
simplicity we first give proofs of the basic results for It6 equations on R”.

There are extensions to infinite-dimensional systems with applications
to smoothing and the strong Feller property for infinite-dimensional
Kolmogorov equations in [3, 17]. There are also applications to non-
linear reaction-diffusion equations [15]. For other generalizations of
Bismut’s formula in a geometric context see [16]. The work of Krylov
[11] in this general area must also be mentioned although the approach
and aims are rather different.

Throughout this article, we use BC” for the space of bounded C’ func-
tions with their first r derivatives bounded (using a given Riemannian
metric on the manifold).

2. FORMULAE WITH SIMPLE PROOF FOR R"

For M = R", we can take the It6 form of (1),
dx,= X(x,)dB,+ Z(x,) d1, (3)

where X: R” — L(R”, R”)and Z: R" — R” are C* with derivatives DX: R” —
L(R", L(R™, R")) and DZ: R"— L(R", R"), etc. There is the derivative
equation

dv,=DX(x)v,) dB, + DZ(x )(v,) dt (4)

whose solution v, = DF,(x,)(v,) starting from v, is the derivative {(in prob-
ability) of F, at x, in the direction vy. Here {F,(—),t>0} is a solution
flow to (3), so that x, = F,(x,), for x,e R". We do not need to assume the
existence of a sample smooth version of F,: M x Q2 —» M.

For ¢: R" — L{R"; R), define 6P ,(¢): R" — L(R", R) by

(0P, (¢))x, (vo) = E¢ . (v,) (5)
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whenever the right-hand side exists. Here ¢ .(v)=¢(x)(v). In particular,
this can be applied to ¢, = (df), := Df(x) where f: R" — R has bounded
derivative. Formal differentiation under the expectation suggests

d(P. f)x, (00) = (8P (df ), (vo).

This is well known when X and Z have bounded first derivatives. It cannot
hold for f=1 when (3) is not complete (i.e., explosive). In fact, we deal
only with complete systems: we are almost forced to do this since for 6P,
to have a reasonable domain of definition some integrability conditions on
DF (x,) are needed and it is shown in [13] that non-explosion follows, for
a wide class of symmetrizable diffusions, from dP, f=0P,(df) for all fe C%
together with Ey,_.|DF,(x,)| < oo for all xoeM, t>0. Here ¢ is the
explosion time. Precise conditions for d(P, f)= (6P,)(df) are given in the
Appendix below.

Our basic result is the following. It originally appeared in this form in

[13]

THEOREM 2.1. Let (3) be complete and non-degenerate, so there is a right
inverse map Y(x) to X(x) for each x in R", smooth in x. Let /- R" — R be
BC" with 6P,(df ) =d(P, ') almost surely (w.r.t. Lebesgue measure) for t 0.
Then for almost all x,€ R" and t >0,

1 t
d(P, f)(xo)(ve) = 7 Ef(x,) fo <Y(x,)v,), dB.)pmy  voER",  (6)
provided {§ {Y(x)(v,), dB,> gm, 120, is a martingale.
Proof. Let T>0. Parabolic regularity ensures that [t6’s formula can be
applied to (f, x)+—= P,_,f(x), 0<¢< T to yield

Pr i f(x)=Prfixg)+ [ d(Pr_.f),, (X(x,) dB) )

for te [0, T). Taking the limit as t — T, we have

fler)=Poftx)+ [ dPr S, (X(x,) dB,).

Multiplying through by our martingale and then taking expectations using
the fact that f is bounded, we obtain
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T T
Ef(xr) | (¥(x)0,dBY=E[ d(Pr_,f)., (v, ds
=£[ (6P, )@, (0,)ds
T
=], (PGP )y, (v0) ds

T
= | BPr(df)).y (v0) ds = T 6P 1(df)., (v0)
by the equivalence of the lax of x; with the Lebesgue measure and the semi-
group property of 6P,. ||

Remarks. 1. The proof shows that under our conditions equality in
(6) holds for each x,e M if and only if éP,(df)=d(P,f) at each point.
This is true provided x+ E |DF,(x)| is continuous. The same holds for
various variations of Theorem 2.1 which follow.

2. The martingale hypothesis is satisfied if
| E1Y(x)@)? ds< o0
(1]

for all +. In turn this is implied by the uniform ellipticity condition
[Y(x)(w)|? < (1/8) |w|? for all x, we R", for some ¢ >0, together with

j Elo>ds<o, 120 (8)
]
Under these conditions, (6) yields

sup Id(P,f),1 < sup /()5 sup [ EIDF, (07 ds,

In particular, if X, Z have bounded first derivatives, then Gronwall’s
inequality together with (4) yields a constant o with

sup |d(P, f),l < —~\/e“'—1 sup [f(x)l. 9)

xe R xe R”

For Sobolev norm estimates see (33) below.
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COROLLARY 2.2. Let (1) be complete and uniformly elliptic. Then (6)
holds for all f in BC' provided that H,(x)(v,v) is bounded above; ie.,
H,(x)(v,v) < c|v|% Here H, is defined by

H,(x)(v, v) = 2{DZ(x)v), v> + i IDX(x)(v)|*

+iﬁ5 (DX (x}v), vD2
1

Proof. 1. By Lemma A2 in the Appendix, we have [} E |v,|* ds finite
for each >0 while Theorem AS and its remark give us the a.s. differen-
tiability required.

2. The case in which there is a zero-order term and the coefficients
are time dependent can be dealt with in the same way: Let {a :1=0} be
second-order elliptic operators on R" with

A (f)x)=3 trace D’f (x)(X,(x)(—), X (x)(—))
+ Df (xNZ(x)) + V.(x) f(x)

for X,, Z, as X, Z before, for each />0 continuous in ¢ together with their
spatial derivatives, and with V (-): [0, ov) x R" - R continuous and
bounded above on each [0, T]x R". For each T>0 and x,eR" let
{x]:0<t< T} be the solution of

dxI'=X,_,(xIVdB,+ Z,_ (x])dt,
with xJ = x, (assuming no explosion) and set
al(xo)=ehVrstshd 0T
Also write x (@) = F[(x,, @). Now suppose «,(-) : [0, oc0) x R” — R satisfies

0
Si=dhu, 10, (10)

and is C"? and bounded on each [0, 7] x R”. Then, as before, we can
apply Itd's formula to {u;_ (x):0<¢<T}toseethat {u;_,(x]):0<i<T}
is a martingale and u,(x) = Eu!(x,) uo(x}); e.g., see [9]. If we also assume

(i) V,is C' for each r and continous and bounded above on each
[0, T]x R",
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(ii) we can differentiate under the expectation to have for almost all
Xo€ R",

D x0)o) = E  2x0) Dao(x!)0f) + o ) [ D, () vt s

where v! solves

dv;=DX, (xWv,)dB,+DZ, (x)(v)ds

Vg = Vg, 0<s<

(iii) For Y,(x), a right inverse for X,(x), assume _[6 (Y7 (xI)NvD),dB,),
0<t<T, is a martingale.

Then for each 0 << T,

1 . r
Du,(x0)(vo) =7 Euy(x!) el Vimsep) ds fo (Y, (xNv)), dB,>
1 " t ps
+ = Eug(x") foV'—suf)de j DV,_(x)(v')drds. (11)
t 0vo

The only real additional ingredients in the proof are the almost sure
identities

FrTAS(F_vT(XO’ (U), Bs(w))sz+r(x03 U)), (x09 w)EM7
and

asr(x07 (,U) a;“:i(FsT(XOs (D), 05((1))) = a;-'(XOy Cl)),

where 0,: 2 — @ is the shift, e.g,, using the canonical representation of
{B,:1>0}.

Note that for X, Z with first two derivatives bounded and f in BC?
we can differentiate twice under the integral sign [8] to see directly that
P,_,f(x) is sufficiently regular to prove (6). This gives (6) without using
elliptic regularity results and from this (e.g., via (9)) we can approximate
to obtain the smoothing property directly (see [3] for this approach in
infinite dimensions). |

For further smoothing, we can use the next result (¢ is a constant).

THEOREM 2.3. Assume that Eq. (3) is complete and has uniform ellip-
ticity: X has a right inverse Y, which is bounded on R". Suppose also
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1. For each x,, uge R” and each T >0,
T
[ EIDF(xo)(uo)* ds < luol (12)
(1]

2. For each t>0,

sup sup (£ [D?F(yo)(ug, vo)l) S € ol [vo]

0<s<t yoeR"
and
sup sup (E|DF(yq)l)<c

0<s<t yoe R

Let f be in BC? and such that d(P,f),, =0P/df),, for almost all x,€ R"
and that we can differentiate P, f under the expectation to give, for almost
all x,,

DzPrf(xo)(uo)(Uo) = Esz(x,)(DF,(xo) g, DF,(xq) vo)
+ EDf (x )(D*F (xo)(uo, o)) (13)

for each t = 0. Then for almost all x, in R" and all 1> 0,

Dthf(xo)(uO’ UO)

4 t 42
S E{rea [ e, amy [T e w,dsd)
773 0
2B [ DR S NDX V) ) ds
2 12
+2E [ DOP,_, PxNDF, (50t v0)) . (14)

If also [{* (DY(x,)(DF(xo) ug)(DF(xy) vy), dB,) is a martingale, then

Dthf(xo)(uO’ UO)

4 ' 1/2
=;E{f(x,)f CY(x) v, dBY [ CY(x)us, st>}
/2 o

2 2
28] s [ DY 0. 48,5

2 /
#2500 [ Yo D (o) B (19

[/
0
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Proof. Since d(P;_,f) is smooth and satisfies the relevant parabolic
equation, by Itd’s formula (e.g., [6, Cor. 3E1]), if 0t < T,

AP 1 d), 0) = dPr )y o) + [ VP, ) )(X(x,) dBYD,)
+[ Py f),, (DX(x,)(v,) dB,)
giving
(@)os o) = d(Pr S}y (o) + [ DHPL_, )5 )(XCx,) dBY0,)
+[ D S )DX)(0,) dB,)
Using the uniform ellipticity and Hypothesis 1 (ie., Eq. (12)), this gives
{0 [ (vixu.as)]
= B[ DAPr A0 ds
+E[ DB, e DX (Yx,) ) s

Thus, by (13) and using the two hypotheses to justify changing the order
of integration,

TLD?P, £ (xo o, v0)]
= E{Drte)on) [ < u a1
—£{[ DP, DX (Fx) ) s

B[ Py SR )DPF. o)t v0))} s

Now let T'=1/2, and replace f by P,, f. Note that by Theorem 2.1 and the
Markov property (or cocycle property of flows)

2 t
DP s f(x2)v,2) =7 E {f(x,) J,, (Y0) v, B>, 05 t/z}.
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We see

Dszf(xo)(uo» vo)

{ f (Y(x v‘,dB>f <Y(x)u3,d3>}
2 /2
—;Ejo Pz o SI)DX(x)0)(Yix)u,)) ds

2 12
+TE[ DB SIX)DE, (o) ko, vo)) d,

giving (14). Now apply Itd’s formula to {P,_, f(x,):0<s<rt}ats=121to
obtain

Paf(5)=Pf(5o)+ ] D(Pia  NNx)(X(x,) B (16)

Equation (15) follows on multiplying (16) by [4> {DY(x,)(u,)(v,), dB,
and also by [§* (Y(x,) D*F,(x,)(uy, 1), dB,) and taking expectations to
replace the second and third terms in the right-hand side of (16), using the
identity

DX(x)(u)( Y(x)v) + X(x) DY(x)(u)(v) =0. (17)

Remarks. (A) Formula (14) combined with Theorem 2.1 has some
advantage over (15) for estimation since the derivative of Y does not appear.

(B) Formula (15) can be obtained by applying Theorem 2.1, with ¢
replaced by ¢/2, to P,, fand then differentiating under the expectation and
stochastic integral sign, assuming this is legitimate, then using the Markov
property to replace the P,, f(x,,) by f(x,)

(C) Hypotheses 1 and 2 of the theorem and the conditions on the
function f are satisfied if |[DX|, |D?X|, |DA|, and |D?A4| are bounded. See
Lemma A2, theorem AS5, and Proposition A8 in the Appendix. Further-
more, the martingale condition needed for (15) also holds if DY is bounded
as a bilinear map.

3. FORMULAE WITH SIMPLE PROOF FOR M

For a general smooth manifold M, we return to the Stratonovich equa-
tion (1). We continue to assume non-explosion and non-degeneracy. Thus
now X(x) is a surjective linear map of R™ onto the tangent space 7, M to
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M at x and A4 is a smooth vector field on M. Write X‘(x) = X(x)(e;) for
ey, .., €,, an orthonormal basis for R™. Thus (1) becomes

dx,=fX"(x,)odB:+A(x,)dt. (18)

1

Here {B{, t>0} are independent one-dimensional Brownian motions. The

.generator &/, being elliptic, can be written .o/ =14 + Z where 4 denotes
the Laplace-Beltrami operator for an induced Riemannian metric on M
and Z is a smooth vector field on M. Using this metric and the Levi—Civita
connection,

A¥ =15 VX)) + (19)
1

The derivative equation extending (4) is most concisely expressed as a
covariant equation

=VX(v,)odB,+VA(v,)dl (20)
By definition, this means
di,=//; ' VX(//,8,)odB,+//7 ' VA(// /D) dt (21)

for 5,=//;'v, with //,: T, ;M — T M parallel translation along the paths
of {x,::>0}.
Recall that covariant differentiation gives linear maps
VA: T M->T .M, xXeM,
VX:T.M— L(R"; T M) xeM,
and
VAT M- L(T.M; T.M) xeM,
sometimes considered as a bilinear map by

V2A(u, v) =V24(u)(v) etc.

For the (measurable) stochastic flow {F,(x):¢>0, xe M} to (1), the
derivative in probability now becomes a linear map between tangent spaces
written

T, Fo.T . M—->T M, Xo€M,
or

TF,: TM — TM,

and v, =T, F,(v,), the derivative at x, in the direction v,.
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Analogous to the probability semigroup P,, there is the following semi-
group (formally) on differential forms:

O0P, (v, ..., v,) = E(TF (v,), ..., TF (v,)). (22)
Here ¢ is a p-form. If ¢ = df for some function f, then
0P (df )(v) = Edf (TF,(v)).

In [8], it was shown that §P,(df)=d(P,f) if VX, VA, and VX are
bounded, and if the stochastic differential equation is strongly complete on
R" (or on a complete Riemannian manifold with bounded curvature).
Theorems of this kind are since much improved partially due to the con-
cept of strong 1-completeness [13]. See the Appendix for the definition of
strong 1-completeness.

To differentiate P, f twice it is convenient to use the covariant derivative

VTF, which is bilinear:
VT F T MxT M—-T M.

It can be defined by
D
VT Filuo, vo) =5 Ty F(v(5)) s -0 (23)

for ¢ a C' curve in M with ¢(0) = x,, 6(0) = u,, and for v(s) the paraliel
translate of v, along g to o(s), the derivative being a derivative in probabil-
ity in general [8, p. 141].

The extensions of Theorems 2.1 and 2.3 can be written as follows and
proved in essentially the same way; note that we can take Y(x)= X{(x)*.

THEOREM 3.1. Let M be a complete Riemannian manifold and of =
14+ Z. Assume (1) is complete. Let f: M — R be BC' with 6P (df)=
d(P,f) ae. for t 20. Then for almost all x,e M,

1 t
dP f(vo) =7 Ef (x,) fo {v,, X(x,)dB; >,  vo€T M, (24)

provided [§ (v,, X(x,) dB,) is a martingale. Furthermore, assume

1. For each T>0 and x,e M,

T
[ EIT Fw)?ds<clul’,  ueT M. (25)
4]
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2. For each T>0,

sup  sup (E|VT, F(uo, vo)l) < ¢ luo| lvol, (26)

0<s<T yweM
and

sup sup (E|T, Fl)<ec (27)

0<s<T yoeM

Let f be a BC? function such that we can differentiate P, f under the expec-
tation to give

VdP, f(—=N—)=EVdf(TF(-), TF(-)+ Edf(VTF(—, —)),  ae,
(28)

for each t20. Then for almost all x,e M, all u,, vy in T, M, and t >0,

4 ' 2
V(P f (o, vo)= 5 E {f(x,) J,, <oo XD B | Cu, Xix) dBS>}
2 12
1B ([ o ) a8,
t 0

+ j”z (VTF . (ug, vo), X(x,) dBQ)}.

From Theorem 3.1, formula (24) holds for all x if H,(x)(v, v} < ¢ |v]? for
some constant ¢, by Lemma A2, Theorem A5, and its remark. Here

H,(x)(v, v) := — Ric (v, v) + 2{VZ(x)(v), v) +i IVX(x)|?

m o _
+Z|“U“|3 (VX (x)(p), v)2 (29)

Suppose the first three derivatives of X and the first two of 4 are bounded;
then all the conditions of the theorem hold. See Lemma A2, Proposi-
tion A6, and Proposition A8 for details.

Now let p,: M x M — R, t>0, be the heat kernel (with respect to the
Riemannian volume element) so that

Pfx)=] px ) f(3) by (30)

There is the following Bismut-type formula (see [6] and Section 5A
below).
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COROLLARY 3.2. Suppose 6P (df)=d(P,f) for all fin C¥ and for all
t>0. Then, for t >0,

1 !
Vlog p.(-, y)(x) =7 E {JO (TF,)* X(x,) dB,|x, = y} (31)

for almost all ye M provided [y {v,, X(x,)dB,) is a martingale. In par-
ticular, (31) holds if H, defined in (29) is bounded above.

Proof. The proof is just as for the compact case. Let fe C¥. By the
smoothness of p,(—, —) for 1 >0, we can differentiate Eq. (30) to obtain

d(P:f)(U0)=JM VP (=, 1) 0004 (1) dy. (32)

On the other hand, we may rewrite Eq. (24) as follows:

d(P,f)v0)=] pi(xon $)S(3)

x E{l [ CTF.(v0), X(x,) dB,>| x,= y} dy.
tJo

Comparing the last two equations, we get

1t
Vo= 3o = pixos N E {7 [ TEROXAB) I =5}

Equality in (31) for all y follows from the continuity of the right-hand
side in y: for this see [1], the Appendix to [16], or [19].

Let 2: M — R be a smooth function. There is a corresponding Sobolev
space WP '={f M — Rst. f, Vfe L"(M, e*" dx)} for 1 < p < oo with norm
| flee1=1flrr+1Vfl|,». Here dx is the Riemannian volume measure.

COROLLARY 3.3. Suppose s/ = 1A+ Vh for smooth h and that

t
k*=: sup EJ |T F,|?ds < co.
0

xeM

Then (24) holds almost everywhere for any fe L7, 1 <p < oo, and, for t >0,
P, gives a continuous map

P, LP(M, e* dx) - WP (M, e* dx), l<p<©



DERIVATIVES OF HEAT SEMIGROUPS 265

with
(P.f) |uu<(1+ )mu, (33)

where k,=k for 2< p< oo, and k,=c,k” for 1 <p<?2 and c, a universal
constant.

Proof. Take fin BC'. Noting that ¢ dx is an invariant measure for the
solution of (1), formula (24) gives

t 2
N [ R

I 2
<sup Ef [T F,(v)}? ds) \/J. Ef (F,(x))? e* dx
t M

xeM

1 12
—;(supEJ T E, (o)) ds> o

xeM

If fe L? let f, be a sequence in C§ converging to fin L% then d(P, f,)
converges in L? by the estimate with limit d(P, /). So formula (24) holds
almost everywhere for L* functions.

On the other hand, if f also belongs to L™,

1 1 172
P fl e < (1 + sup ?(L E|TF, ds) ) \f] (34)

xeM

By the Reisz—Thorin interpolation theorem, we see for feL’n L”,
2 p<oo,

k
I(P,f)lu.1<<1+;> I Lo (35)

Again we conclude that (24) holds for fe L”, 2< p<oo. For l<p<?2,
let g be such that 1/p + 1/g=1. Then Holder’s inequality gives

venol<i([ | aEm | aemas, ree [ oa)”
< o [ [ cxam, ]
x( E[f(F,(x))]? ¢ dx)up
—+(sop B[ [ <xaz. 00> ) 1710

S80/125/1-19
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But
¢ q 1 q/2
EU (X dB, TXFS(U)>:| <cpE(f ITXFX(D)Ist)
0 0

by the Burkholder-Davis—-Gundy inequality. Here ¢, is a constant. So
again we have (33).

From (32) and Corollary 3.2 we see that (24) holds almost everywhere
for fe L. as therefore does (34).

ExaMPLE. Left invariant systems on Lie groups. Let G be a connected
Lie group with identity element 1 and with L, and R, denoting left and
right translation by G. Consider a left invariant s.d.e.

dx, = X(x,)odB, + A(x,) dt (36)

with solution {g,:¢>0} from 1. Then (36) has solution flow

F,(u)=R,u, t=20, uedG.

Take a left-invariant Riemannian metric on G. Then by (24) for fe BC'(G),
voe T, G, if (36) is non-degenerate with X(1): R” — T, G an isometry,

1 !
4P f00) =1 E{ 11 [ <TuR,00) X(2,) 48,

~ | —

E{ (8 ]| Cadlg) ! 00 dB,3,

where B, = X(1)B,. This gives

1 ' -
Viog p,(1, y)=7E{L ad(g; ')*dB,| g, = y}-

4. For 1-FOrMS

Let M be a complete Riemannian manifold and A: M — R a smooth
function with Ly, the Lie derivative in the direction of Vh. Let
A"=:A+ 2Ly, be the Bismut-Witten-Laplacian, and 4" ¢ its restriction
to g-forms. It is then an essentially self-adjoint linear operator on
LY (M, ™ dx) (see [13], extending [2] from the case & =0). We still use
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A" for its closure and use D(4") for its domain. By the spectral theorem,
there is a smooth semigroup e''/2*#" solving the heat equation

oP, 1,
=2 4'P,.

A stochastic dynamical system (1) is called an A-Brownian system if it has
generator 14”. Its solution is called an A-Brownian motion.

For clarity, we sometime use P*¢ for the restriction of the semigroup
P =V to gforms. Denoting exterior differentiation by d with
suitable domain, let 8" be the adjoint of d in L*(M, e***'dx). Then
A" = — (d6" + 6"d), and for ¢ € D(4"),

d(P}9¢)= P}-9*(dg). (37)
Define

J[ gedx,= [ ox(x) aB) =3[ ') ds (38)

for a 1-form ¢. Theorem 2.1 has a generalization to closed differential
forms. It is given in terms of the line integral [ ¢-dx, and a martingale;
for it we need the following It6’s formula from [6]:

LemMa 4.1 (It6’s Formula for one Forms). Let T be a stopping time
with T < &, then

7

B =g+ [ VHX(x)dBYw)+[ " HVXG) aB)

+1[7 Ao ds

+4] trace(Vo(X(x,)(—) VX(w)(~ D) ds. 1

THEOREM 4.2. Consider an h-Brownian system. Assume there is no explo-
sion, and

t
j E|T.F|?ds<w, foreachxinM.
0

Let ¢ be a closed 1-form in D(4")~ L™, such that

3P p=e214"y
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Then
A1 1 ! !
Pl igog) == E [ $odx, | (X(x,)dB,, TF,(v)>, (39)
t Jo 0
for all voe T, M.
Proof. Following the proof for a compact manifold as in [6], let
] ! h h
0.(#)= =4[ P(5"¢)ds (40)

Differentiate Eq. (40) to obtain

0

i _— __ L phesh
5, Q6= —1PIE"9).

We also have
Q.#)=—1[ de'(Phg) ds

=1 [ anP)ds
]
—Plo—y
since do*(P"¢)= P"(ds"¢) is uniformly continuous in s and
d(P"¢)=P"dg=0.
Consequently,
4"(Q(9)) = — P1(3"¢) + 5",

Apply Ité’s formula to (¢, x)— Q1_,¢(x), which is sufficiently smooth
because P’¢ is, to obtain

07 #(x)=Qrd(xo)+ [ diQr ,$)X(x.)dB)

3 a0 g+ [ 20, pix)ds

H
0

= Qrd(xo)+ [ P (@)X(x,) dB,)— [ pods,.
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Setting ¢t = T, we obtain
T T
J, #edx=0rd)x)+ [ Ph()(X(x.) dB,)
and thus
T T T
E[ ¢odx, | (X(x)dB,,TF(0))=E[ Ph §(TF.(v,))ds
4] 0 o
But
T T
E[ P4 §(TF.(v0) ds=| EP% §(TF.(v,)) ds, (41)
0 0
by Fubini’s theorem, since
T T
J, EVPs_ (T (vo))] ds<1Bl.. | EITF(vo) ds<oo.

Next notice
EPY_ §(TF,(vy)) = E$(TF(vy)) = Phé(v,)

from the strong Markov property. We obtain
1 T T
Pyow = E{ [ dodv, [ <X ap, TEG)
T 4] 0

Remark. 1f we assume sup, E |T F,|° < o for each ¢ the result holds
for all ¢ € D(4"): first we have 6P,¢ = e'/»'4"$ for ¢ € L2 by continuity and
also Eq. (41) holds from the following argument:

J, EVP5_ $(TEw)) ds< | EI(TFr(v))] ds

T
< E|T,F;(v)|?sup (JO E 81500 ds).
But {,, E 9|}, e dx=[|¢|* e dx < 0. So E |§|},, < o for each x by
the continuity of E | ¢|7,,,,= Pr(|4|*)(x) in x.

COROLLARY 4.3. Suppose |VX| is bounded and for all ve T M, all
x € M, Hess(h)(v, v)— $Ric (v, v)< ¢ |v|? for some constant c. Then (39)
holds for all closed 1-forms in D(4").
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Proof. By Lemma A2, we have sup, E |T,F,|* < oo and Esup,_, |T.F,|
< o. Thus Proposition A6 shows that P"'¢ =3§P,(¢). Theorem 4.2 now

applies. |1
Remark. Note that if ¢ =df, formula (39) reduces to (24) using (37).

5. THE HEssIAN FLow

A. Let Z=A4% as in Section 3. Let xoe M with {x,:0<r<¢},
being the solution to (1) with initial value x, and explosion time . Let W7
be the solution flow to the covariant differential equation along {x,},

DWw? DW?(vo) _

Lo iz \ .
— 5Rlc (WZ(vo),— )+ VZ(WZ(v,)), (42)

with WZ(v,) = v,. It is called the Hessian flow. Here Ric denotes the Ricci
curvature of the manifold, and # denotes the relevant raising or lowering
of indices so that Ric*(v, —)e T .M if ve T .M. For xe M set

p(x)= | ~i|nf1 {Ric,(v, 1) —2VZ(x}* (v, v)}.

The following is a generalization of a result in [6].

ProPOSITION 5.1 [13). Let Z=Vh for h a smooth function on M.
Suppose for some T,>0,

ESup y,ceme VRIAFONE £ 0< 1< T,

1< Ty

Then for a closed bounded C? 1-form ¢, we have for 0 <t < T,
ph ’¢(uo)——Ej o dx, J (X(x,) dB,, W¥(1,)). (43)

The proof is as for (39) with TF,, just noticing that under the conditions
of the proposition, the s.d.e. does not explode and P"'¢= E¢(W") for
bounded 1-forms ¢ (see, e.g., [5 and 14]).

Remark. Taking ¢ = df, we obtain, by (37),

4P, flo0) =7 B () [ <WE(wo), X(x,) a8, (44)

which leads to Bismut’s formula [6] for Vliog p,(—, y) (proved there
for Z=0 and M compact). In fact, (44) can be proved directly, without
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assuming that Z is a gradient, by our basic method: Let ¢, =d(P, /), then
it solves 0¢,/0t=1%14"'¢,+ Ly, 4, since P, f solves dg/dt=3%4g+ Ly, g.
Then Itd’s formula (as in [6]) applied to ¢,_,(WZ(vy)) shows that
#.(vo) = Epo(W?(vy)) and our usual method can be used. Furthermore, if
p is bounded from below so that |W?| is bounded as in [6], then (44)
holds for bounded measurable functions.

Note that it was shown, in [7], that for a gradient system on compact
M, E{v,|x,:0<s<t} = W"u,). Recall that a gradient system is given by
X(-)e)=Vf(-), e>, ee R™, for f: M — R™, an isometric embedding. This
relation between the derivative flow and the Hessian flow holds for non-
compact manifolds if E [ [VX(x,)|? |v,|* ds < c0.

B. Let V.(-): [0, 0)x R"—+ R be continuous, C! in x for each
and bounded above with derivative dV bounded on each [0, T]x R"
Consider the equation with potential V,

I3} 1
%:5 Au,+ Lyu + V,u,.

Assume that the s.d.e. (1} does not explode. By the corresponding argument
to that used for the case V=0, we get for voe T, M,

" 14
du (v5) = Eug(x,) €0 ¥'=00 [V, (W¥(v)) ds
0

+ E dug(WE(v,)) efo Vi-stxo) ds

provided that — § Ric* +VZ is bounded above as a linear operator and u,
is BC'. From this the proof analogous to that of (11) gives the following.

THEOREM 5.2. Assume non-explosion and suppose — 3 Ric* +VZ is
bounded above and dV is bounded. Then for u, bounded measurable and t > 0,

1 ; ¢
di,(vo) =7 Euo((x,) e ¥1=% [ (W7, X(x,) dB,)

1 .
+2 Eug(x,)elo V1=t [ (1 —r)ydV,_,(x,)(WZ)dr. (45)

6. For HIGHER ORDER FORMS AND GRADIENT BROWNIAN SYSTEMS

Recall that a gradient A-Brownian system is a gradient system with
A(x)=:Vh(x). For such systems X7 VX'(X')=0. We assume there is no
explosion as before.
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If 4 is a linear map from a vector space E to E, then (d4)? A4 is the map
from Ex --- x Eto Ex --- x E defined by

q
(dA) A", ., v9) = (0", .., AV, .., v9).

i=1

Let vo=(vg, .., v8), for vye T, M. Denote by v, the ¢ vector induced
by TF,:

v,= (TFt(v(I))’ TF,(U%), .oy TF,(Ug))

LEMMA 6.1 [6]. Let 8 be a g form. Then, for a gradient h-Brownian
system,

00,) = 0(v0) + | VO(X(x,) dB)(0,)

+ [ 0((day (VX(~) dB)w) + [ § 44 9(6)(w,) ds.
0 0
Recall that if 8 is a g form, then
(8P,) B(v0) = EO(v,) (46)

where defined. Define a (¢ — 1) form [} 6-dx, by

t 1 t
f ()des(oco)::;f 8(X(x,) dB,, TF,(x}), ... TF,(a2~ 1))
] ]

! j S*O(TF.(a)), ... TF,(a4~ ")) ds (47)
2o

for oy =(af, .., a4~ ') a (g — 1)-vector. Then we have the following exten-
sion of Theorem 4.2.

THEOREM 6.2. Let M be a complete Riemannian manifold. Consider a
gradient h-Brownian system on it. Suppose it has no explosion and for each
t>0and xe M,

t
j E|T,F,)% ds < .
0
Let 8 be a closed bounded C? g form in D(4™ %) with

SP,0= P,
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Then

(PR99), =~ B[ (X(x) dB T F (D> A [ Bodx,.  (48)
t 0 0
Proof. Let Q,0 be the (¢— 1) form given by
0.(0)x5)= — 4 (6*Pre6)(xo) s, (49)

for aoe A" T M.
Note that P 9(0) is smooth on [0, T]x M by parabolic regularity, so

a

d(Q.(0))= —%fi ds"(P"6) ds,

8"Q,(0) = —5f 548"(P"™9) ds = 0.
0

In particular,

d(Q(0) =4[ 4™ (P2 70) ds = P10~ (50)

since 4% 99 = —dé"6. Therefore,
474~ (Q,(8)) = — P 971(5%6) + 6"6.

Next we apply Ité’s formula (the previous lemma) to (¢, ) —
Qr_(0)(a), writing o, = (TF, (%), -y TF(2&™")):

Qr8(x) = Qr0(zo) + || VOr_,0(X(x,) dB,)(x,)
+[ 0 0UdAy (VX(=) dB ()

1 1 g
3 ) 40r @) ds+ | (05 0w ds.
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From the calculations above we obtain
Q1 0(x)=Q0(z0)+ | VOr 0(X(x) dB,)(x)
+] Q7 (@AY (VX(=) dB)(x)
L[ o0
+1[ 6"0(x,) as,
0
By definition and the equality above,

T 1 ¢7
0 dx,(20)= Q1 0x0) +— | O(X(x,) dB,, )
qg-o

o

+[ v, 0(X(x) dB,)(x)

] 0r 01 (VX(=)dB()) (51)

We calculate the expectation of each term of j(’)()odx‘, in (51) after
wedging with | (X(x,)dB,, TF,(—)) ds. The first term clearly vanishes.
The last term vanishes as well for a gradient A-Brownian system since
> VX(X'(=))=0.

Take v, = (v}, .., v§). Write v’ = TF,(vy), and denote by w,(-) the linear
map

g -1

P L
w (- )=(TF-), ... TF,(-)).
Then

1 7 T
~E[ 0(X(x)dB,w,(-) A | <X(x,)dB,, TF,(-)>(v0)
q9 “o 0

T A~

(1) iEj O, v!, .., vl ., 09 ds

k] R LA
0

H
I e

Q= & -

I M-n

(—1)" F(=1) ‘E'[ 00", ... v0) ds

i

T
:(_1)4*"1;"[ (v, .o v9) ds
0

=(—-1)*"! fOT P'0(v) ds.
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The last step uses the assumption [J E T, F,|* ds < co. Similar calcula-
tions show

T T
E{jo VOr_ B(X(x,) dB,)w,() A | CX(x,)dB,. TE,(-))}(vo)

-y (_1)441‘EJ‘OTV(QT;SO)(vi)(vi, s Y) ds

i=1

—(=1)" Efo (d(Qr_.0)v!, .. v9) ds
= (1t [ PP (0) - 00 ds
0

—(—1)! [T(P"T(O)(v)—jTPfH(v) ds:I.

0

Comparing these with (51), we have
1 T T
P’;"9=?EJ (X(x,)dB,, TF.(-)> Aj Ocdx,. |
0 0

Note. With an additional condition, sup, ., E |T.F,|* < o, the for-
mula in the above proposition holds for forms which are not necessarily
bounded. See the remark at the end of Section 4.

Recall that p(x) is the distance function between x and a fixed point in
M, and 6h/6p = dh(Vp).

COROLLARY 6.3. Consider a gradient h-Brownian system. Formula (48)
holds for a closed C*q-form in D(4"), if one of the following conditions holds.

1. The related second fundamental form is bounded and 1 Ric—
Hess(h) is bounded from below.

2. The second fundamental form is bounded by c[1 +In(1 + p(x))]">,
and also

oh
—<c[1+p(x)],
ap

Hess(h)(x){(v, v) < c[1 +In(1 + p(x))] Jv|>

Proof. This follows since ([6]) for v,,v,€ T .M and ee R™,

<VX(UI)€, U2>x = <a(U1, v2)5 e>R""
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Lemmas A2 and A3 give E sup,, |7, F,|* <o for all g. The second part
of Proposition A6 now gives 6P,0=P"0. So the conditions of the
theorem are satisfied, with the remark above used to avoid assuming 8 is
bounded. |

We now have the extension of our basic differentiation result to the case
of g-forms.

CoROLLARY 6.4. Consider a gradient h-Brownian system on a complete
Riemannian manifold. Suppose there is no explosion and _[{]E | T . F.|*ds
< oo. Let ¢ be a q— 1 form such that d¢ is a bounded C* form in D(A™?)
with P"4(dg)= 6P (dp). Then

1 I /\_q/\l_’—\
d(Pf-tll((p)):?E(L (X(x,)dB,, TE,()> A ¢(TF,(-), ..., TF,(.))).
Proof. By (47), if 0 =dg,

qg-1

I l ! A ™ et
[ 0cdx(—)==] dp(x(x,) dB,, TF.(), -, TE))(—)
0 qJo

g--1
1 f P R
+3 | ATECTED-) ds. (53)

On the other hand, if ay=(x),..a4 ') for ajeT M, then by Itd’s
formula

G(TF, (%), s TF, (2§ "))

= §00) + || VO(X(x,) dBTE, (83), o TF(af ')

+ *j A'G(TF,(al), ... TF, (2% ') ds. (54)
0
However,

E[ (X(x)dB,, TF()> A [ db(X(x,)dB,, TF,(), ., TF.())

~gE JO' (X(x,) dB,, TF,(-)> A fo' VH(X(x,) dB)(TF,(-), .. TF,(-)).



DERIVATIVES OF HEAT SEMIGROUPS 277

Compare Egs. (53) and (54) to obtain

EL (XdB,, TF.(=)> A jo dp - dx,

q—1

- EJI (XdB,, TF,(—) A j Vé(X dB)TF,(—), ... TF.(—))

g-1

3] XA TFA=)) A [ STF(=), o TRA=)) d

g—1

. ;
~£( [ CXdBLTE(=)> A HTF(=), o TEA-) )

This gives the required result by the formula for P*9(dg) in the previous

theorem. |

Remarks. (i) This can be proved directly as for the case ¢=0 in
Theorem 2.1.

(ii) Equation (52) can be given the following interpretation: Qur
stochastic differential equation determines a 1-form valued process ¥, =
wXA4 >0, given by

¥, o(v0) = [ <Xx,) dBL T F o),
ie.,

¥, o= [ (TG F)* ((X(x)dB,, ).
]

(So for each x4, {¥,, :1>0} determines a local martingale on T} M
with tensor quadratic variation given by [ T.F*T.F, ds. Note that the
Malliavin covariance matrix is given by [§ (T.F*T.F,) ' ds.) In fact, ¥, is
exact: ¥, =dyr, where y,: M x Q2 — R is given by

050 = [ <SUE(0), 4B,

for f: M — R™, the given embedding.
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Equation (52) states

apte g =T E(¥, A (F)*8)

1
=?E{d‘//1 A (Fl)*¢}

(i) Note that (50) gives an explicit cohomology between P <6
and 6.

APPENDIX: DIFFERENTIATION UNDER THE EXPECTATION

Consider the stochastic differential equation:
dx,=X(x,)odB,+ A(x,) dt (55)

on a complete n-dimensional Riemannian manifold. We need the following
result on the existence of a partial flow taken from [8], following Kunita.

THEOREM Al. Suppose X and A are in C’, for r 2 2. Then there is a par-
tially defined flow (F,(-), £(-)) such that for each xe M, (F,(x), {(x)) is a
maximal solution to (55) with lifetime {(x), and if

M (0)={xeM, t<&(x,w)},

then there is a set Q, of full measure such that for all we Qy:

1. M,/ (w) is open in M for each t>0, ie., (-, ®) is lower semicon-
tinuous.

2. F(,o)xMw)y->Misin C~" and is a diffeomorphism onto an
open subset of M. Moreover, the map :t+ F,(-, ) is continuous into
C"~ (M (), with the topology of uniform convergence on compacta of the
first r — 1 derivatives.

3. Let K be a compact set and E¥ =inf,_ E(x). Then

lim  sup d(xy, F(x))= (56)

t 7 K(w) xeK

almost surely on the set {£¥ < 0}, (Here x, is a fixed point of M and d is
any complete metric on M.)

From now on, we use (F,, &) for the partial flow defined in theorem Al
unless otherwise stated.
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Recall that a stochastic differential equation is called strongly p-complete
it its solution can be chosen to be jointly continuous in time and space for
all time when restricted to a smooth singular p-simplex. A singular
p-simplex is a map o from a standard p-simplex to M. We also use the term
“singular p-simplex” for its image. If a s.d.e. is strongly p-complete, ¥ =
almost surely for each smooth singular p-simplex K [12].

Let xe M and ve T, M. Define H, as follows:

H,(x)(v, v)=2(VA(x)(v), v) +§ VIX(X', ), 0) +i IVX()]?

i . . »o1 .
+2 AVX(VX'(0)), v> + (p—2) ZIW (VX'(v), )%
1 1

There are simplifications of H,:

For s.de. (3) on R”,

H,(x)(v, 1) =2{DZ(x)(v), v) + }, IDX'(v)|?
]

m DXx , 2
+(p_2)z<__Tf)‘|i§)_”>_

1

For (1) with generator 4+ L,

H,(x)(v, v) = —Ric (v, ) + 2{VZ(x)(v), ¢ +i IVXi(v)}?

Zo A
+ (p—2)zl—v|—5 (VXi(v), v>2
1
There are the following lemmas from [12].

LEMMA A2. Assume the stochastic differential equation (1) is complete.
Then

(i) It is strongly 1-complete if H (v, v)<c |v|? for some constant c.
Furthermore, if also |VX| is bounded, then it is strongly complete and
sup, E(sup, o, |T F,|?) is finite for all p>0 and t> 0.

(il) Suppose H,(v,v)<c|v|? then sup,. ., E|T.F,|”<ke?"® for
t>0. Here k is a constant independent of p.

For a more refined result, let ¢ and ¢, be two constants, let p(x) be the
distance between x and a fixed point p of M, and assume &/ = %A + Z.



280 ELWORTHY AND LI

LeMMA A3 [12]. Assume that the Ricci curvature at each point x of M
is bounded from below by —c(1+ p*(x)). Suppose dr(Z(x))<c[1+ p(x)],
then there is no explosion. If furthermore |[VX(x)|><c[1+In(1+ p(x))],
and

Ric, (v, v) = 2<VZ(x)(v), v> 2 ¢, [1 +1In(1 + p(x))] |v]?,
then the system is strongly complete and

sup E(sup | T F,|?) <k e*¥

xe K st
Jor all compact sets K. Here k, and k, are constants independent of t.

We first use strong 1-completeness to differentiate under expectations in
the sense of distribution. For this furnish M with a complete Riemannian
metric and let dx denote the corresponding volume measure of M. Let A
be a smooth vector field on M. For fe LIOC(M R), the space of locally
integrable functions on M, we say that geL! (M, R) is the weak Lie
derivative of f in the direction A and write

loc

g=L,/ weakly,

if for all ¢: M > R in Cg, the space of smooth functions with compact
support, we have

| 90 gy dr=~| F(x)[<V(x), 40x)>.+$(x) div A(x)] dx.

A locally integrable 1-form { on M is the weak derivative of f
df=y weakly

if y(A(-))=1L ,f weakly for all C¥ vector fields 4 on M.
Let A be a Cy vector field on M and for each x in M let K(x) be the
integral curve of A through x.

LEMMA A4.  Suppose the s.d.e. (55) is complete. Then for t 20,

(i) with probability one M (w)= {x:t<&(x, w)} has full measure in
M. In particular, fo F(—, w) determmes an element of L\ (M, R) with
probability one for each bounded measurable f: M — R.

If also (55) is strongly 1-complete and f is BC" then with probability 1:

(i) < &EX(w) for any compact subset K of K(x) for almost all x in M;
and
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(iii) the Lie derivative L ;(fo F.(—, w)) exists almost everywhere on
M in the classical sense, is equal to the Lie derivative in the weak sense
almost everywhere, and

LifeF(—, w)=df e TF,(—, o) A(—))  weakly.

Proof. Completeness of (55) implies that £(x, w)= cc with probability
1 for each x in M so that {(x,w)e MxQ:t<&(x,w)} has full A®P
measure. Fubini’s theorem gives (i). The same argument applied to
{(x,w)e M xQ:1t<E¥Nw)} yields (ii).

From (ii) we know that if fe BC', then fo F,(—, ) is C' on almost all
{K(x):xe M} with probability one. In particular, it is absolutely con-
tinuous along the trajectories of A through almost all points of M with
probability one. It follows e.g. by Schwartz [18, Chap. 2, Sect. 5] that
L, (f- F,(—, w)) exists almost everywhere. However, at each point x of
M ,(w) this classical derivative is just df < T . F,(—, w)(A(x)), which is in
L,.. By [18] it is therefore equal to the weak Lie derivative almost
everywhere, with probability 1. [

THEOREM AS5. Suppose the stochastic differential equation (55) is
strongly 1-complete and E|T F, e L. _in x. Then for { in BC', P,f has
weak derivative given by

1
loc

d(P,f)=0P(df)  weakly. (57)

In particular, this holds if H (v, v)<c |v]>

Proof. Let A be a C¥ vector field on M. Then by Lemma A4 and
Fubini’s theorem,

j P,f(x)divA(x)dx=f Ef(F,(x)) div A(x) dx
=Ej fo F(x, ) div A(x) dx
M
- —E jM L (fo F(—, w))(x) dx
- —Ef dfe T .F(—, 0)(A(x)) dx
=- chSP,(df)(A(x)) dx

as required. The last part comes from Lemma A2. ||

580/125/1-20
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Remark. Under the conditions of the theorem it follows as in [18] that
the derivatives L. ,(P, f) exist in the classical sense a.e. for each smooth
vector field A and are given by 6P,(df }(A(-)).

If also the stochastic differential equation (55} is non-degenerate (so that
its generator is elliptic) and x — E |T . F,| is continuous on each compact
set, then, by parabolic regularity and a direct proof in [12], Eq. (57) holds
in the classical sense at all points of x.

In the elliptic case there are the following criteria.

PROPOSITION A6 ([5, 13]). For a complete h-Brownian system on a
complete Riemannian manifold:

(1) suppose Esup,.,|T.F,| <o for all xe M and t>0, then for
every bounded C? closed \-form ¢,, 8P, (¢,) is the unique solution to the
heat equation (04,/0t)= % A™'¢, with initial condition ¢. If ¢ = df, this gives
dP, f(x)= 6P ,(df )(x) for all x and for all bounded C* functions with bounded
first derivatives.

(it) If the system considered is a gradient system, then

SP =214y, (58)

for all bounded C* g-forms ), provided that E(sup,,|TF,|?) is finite for
each t> 0.
In particular, these hold if \VX)| is bounded and H | is bounded above.

However, the following often has advantage when P, f is known to be
BC'.

PROPOSITION A7. Assume s/ =34+ L,. Let M be a complete Rieman-
nian manifold with Ricci curvature bounded from below by —c(1 + p*(x)).
Suppose dp(Z(x))<c[1+ p(x}] and H, , s(x)(v,v)<cln[1+ p(x)] |v|? for
all x andv. Here ¢ and 6 >0 are constants. Then

dP, f=5P,(df)

Jor all fin C provided d(P, f) is bounded uniformly in each [0, T].

Proof. Let ¢, be a bounded C? 1-form. We show that a solution P,¢ to
0¢,/0t=A"¢,+ L ¢, starting from ¢, and bounded on [0, T] x M is given
by E¢,(v,) and then note that d(P,f)= P,(df) for smooth functions to
finish the proof. Let t,(x,) be the first exit time of F,(x,) from the ball
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B(n) radius n, centred at p. Since P,¢ is smooth, we apply It6’s formula to
obtain

Pr_ #(v)=Pré(vo)+ | VPr_ ¢(XdB)+[ Pr_$(VX(v,)dB,).
Replace 1 by ¢ A " in the above inequality to obtain

Py, adlv, . ) =Prdlve) + L "TVP,_ .4(XdB,)

[P avxe) aB)
This gives
Ep(vr) xr<ot EPr_n@(v20) Yo < 7= Pré(vo). (59)
But under the condition H, , ;(x)<clIn[ + p(x)],
Ewa"* e r<e T2 (60)
Here C,=5Up, . g SUpP <1 Hy 4 s(x)(v,v)<cIn(l +n). See [12] for the

details. On the other hand [12], there is a constant k, >0 such that for
each >0,

1 >
P(t"(x)<T) SF [1+ p(x)]? ekol! +#2T, (61)
Take numbers 6' >0, and p>1, ¢ >1 such that 1/p+ 1/g=1 and
p(1+6")y=1+46. Then

sup E |PT717"¢(U1”) Xr"< T|1+5’

<ksup [E |[vaye o7 1]V [P(x" < T)]V2

Here k is a constant. We have used the assumption that P,¢ is uniformly
bounded on [0, T].

By choosing f sufficiently big, we see, from (60) and (61), that the right-
hand side of the inequality is finite. Thus |Py_ +@(v.n) X< 7| is uniformly
integrable. Passing to the limit # — o0 in (59), we have shown

E¢(vr)=Pré(vo). 1

There are also parallel results for higher order forms.
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PROPOSITION AB. Suppose the s.d.e. (55) is strongly 1-complete and T | F,
is also strongly 1-complete. Let e BC?, then

Vd(P, [)(u, v) = EV(df (T F,(u), T F,(v))
+ Edf (V(TF )(u, v)) (62)

Sor all uyveT M, if for each t >0 and compact set K there is a constant
0> 0 such that

supE|T F|* °<w (63)
xe K

and
sup E |VT.F,|'*° < . (64)
xe K

In particular, (62) holds if the first three derivatives of X and the first two
derivatives of A are bounded.

Proof. First, dP,f=6P,(df) from a result in [12]. Let w,veT M.
Take a smooth map a,: [0, 54] — M such that ,(0) =u. Let v(s)e T,,,, M
be the parallel translate of v along o,. Suppose its image is contained in a
compact set K. Then dfy, Ty, F,(v(5))) is a.s. differentiable in s for
each +>0. So for almost all w,

=dfF,(Ul(s)l(Tal(s)Fl(U(s)}) —df (T, F,(v))
A

I

5

150

:;J.O ;‘j—; [df(T(m(ri)Ft(U(rJ))] dr
1 s .

== [ VAf(TF.(6,(), TF(o(r))) dr += [ df(VTF,(6,(r), u(r))) d.
S0 s Jo

But the integrand of the right-hand side is continuous in r in L,, so
Elim, ,,I,=lim,_, EI, . Thus
Vd(P, f)(u, v) = V(P (df ) )(u, v)
= EV(df )(TF (u), TF,(v)) + E df (V(TF ,)(u, v)).

For the last part observe that if the s.d.e. is strongly 2-complete then TF,
is strongly 1-complete, and apply Lemma A2. ||
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For elliptic systems, we may use the previous weak derivatives argument.
Just note that for two C vector fields A, and A4,,

L (P f)x)= V2P, f(x)(A5(x), 4,(x))
+ (VP f(x), VA (4,(x)))

and
L, dfo T, F(A,(x))=Vdf(T.F(A,), T.F(A4,)
+df VT, F,(Ay, A))+dfo T F (VA (4,(x))).

In this case the number ¢ in the assumption can be taken to be zero, but
the required equality (62) holds only almost surely. However, this is
usually enough for our purposes.

Note added in proof. Professor G. Da Prato has pointed out to us that for the case of a
generalized ./, with a zero order term V,, as considered in Section 2.2, use of the formula

3

)= Ph) + [ LYY
0

for the solution to (10} in terms of the evolution {P!:0<s<1} for the generator with the
zero order term removed, together with our formula (11) for d(P/(V,u,), gives an alternative
formula to (11) which does not involve derivatives of V,. It therefore demonstrates the
smoothing property of (10) even when V is not differentiable, and gives estimates in terms of
L™ norms of {V,:0<s<t}. There is a corresponding alternative to (45).
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