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Introduction and main results.

In this paper, we study some properties of continuous strictly

local martingales, i. e : local martingales which are not martingales.

Our interest for this class of local martingales stems from the fact, under

some mild additional conditions on such a process 0) , the tails of

the distributions of sup M and M>~~2 are equivalent to X , , as x -~ oo,

t~O 
~" ~

for two related constants c 1 and c2 (depending on M). Precisely, one of our

main results, which has a number of applications, is the

Theorem 1 : Let 0) be a continuous local martingale taking its

values in R + , and satisfying E[MoJ ]  oo.

Then, both : :

l = 1 i m x P sup x and o~ = 1 i m y P M>~~2 ~ y~ " ~
exist in R , and satisfy :

+

(1)  = /~ r = 
It is particularly easy to prove this theorem if M = 0, and M = c > 0,

for simplicity. In this case, using the Dubins-Schwarz representation of

0) as :

Mt = 03B2M>t , where (03B2u ,u ~ 0) denotes a Brownian motion starting from c,
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we obtain :

sup M = sup (3 and M> = T E = 0}.o0 ° ~

o

It is now easy to show that :

sup Mt (law) c U , and M>1/2(law) c |N| ,

where U is uniform on [0,1], and N is a standard reduced gaussian
r.v. The double equality (1) now follows easily.

In fact, in the first paragraph below, we shall prove a more general
result than that of Theorem 1 ; indeed, we shall consider a general IR-valued

continuous local martingale M and we shall prove the following

Theorem 1’ : : Let 0) be a continuous local martingale, with Mo = 0.
Assume that : :

(i) ; V finite stopping time} is uniformly integrable. °

Then, {Mt, t--~ co} converges a.s. ; we denote this limit by .

Assume furthermore that :

(ii) there exists c > 0 such that : E[exp(cM ))  oo.

Then both : :

l = 1 i m x P sup x and 0" = 1 i m y P(M>~~2 >- y) exist in R ,~ ~ ~ ~ J ~

and satisf y :

(2) e = /~ Z 
In our second paragraph, we apply Theorem 1’ to transient diffusions, in

particular Bessel processes, and we show how the identity (2) translates into

some remarkable identities involving Bessel functions.

A more general discussion of strictly local martingales and their relations

with strong completeness of stochastic flows is made in [9].

Acknowledgment and priority :
The proof of Theorem 1’, concerning a, uses essentially the Tauberian
theorem ; after writing a first draft of this paper in May 1995, we learnt
that Galtchouk - Novikov [10] already went through a similar discussion.
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Ron Doney (Manchester) and J. Warren (Bath) also convinced us that the

argument, if not the result, was "well-known" (to some...).

1. Proof of Theorem 1’.

(1.1) We first show that {Mt,t ---~ o~} converges a.s. ; indeed, we

remark that (i) implies, from Fatou’s lemma, that : E[L~] ]  oo, where

(Lt,t >_ 0) is the local time at 0 of M.

But, it is well-known that the sets : {Mt }, {L~  oo}, and {M>~  oo}

are all a.s. equal ; in our situation, they all have probability 1.

(1.2) We first show that l exists, and satisfies :

(La) e = E[-M ].

To prove this (fairly well-known result), we apply the optional stopping
theorem to M = t ~ 0), for x > 0 ; from ( i ) , M is

x

uniformly integrable ; hence, we obtain :

0 = 

X 

] = 1(T 
x 
=m)] + x P(Tx  ~o)

Consequently : :

x P)sup Mt ~ x) = E[(-M~)1(Tx=~)].
The right-hand side converges, as x ~ ~, to : E[-M~], thanks to the

dominated convergence theorem, since E[ ( ]  oo. This integrability property

follows from the equality : ] = ], our hypothesis (i), and
x x

Fatou’s lemma.

(1.3) The proof that 0" exists, and satisfies :

(l.b) = E( -Mm)

hinges essentially on the following variant of the Tauberian theorem.

Lemma 1 (Feller I01, XIII.5 : : Tauberian theorems, Example (c)).

Let X be an IR+ -valued random variable, and L : R+ ~ R
+ 

be a slowly
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varying f unction at m finally, Iet 0  a  l.

The following properties are equivalent :

i) 1 03BB03B1 (1-E[exp(-03BBX)]) 03BB~0 L(1 03BB)
ii) x03B1P(X ~ x) x~~ 1 0393(-03B1) L(x).

Proof of (1.b) : We write :

1 03BD E[1 - exp(- v2 2 M>~)]

(*) = 1 v E[exp(03BD(-M~)-03BD2 2 M>~) - exp(- 03BD2 2 M>~)]

=E 
It is then easily shown that, thanks to the hypothesis (ii) in Theorem 1’, the

last written expectation converges towards : E(-M~) (precisely, we use

dominated convergence, and the elementary fact :

1) ~ ~ exp(vx), _ if x ~ 0 ;

" x , if x ~ 0 ; ; )
2

Thus, we see that Lemma 1 applies with A = ~- , ’ or equivalently : v = 
X = M>~, and L( ) ~ 2E(-M~ ). []

To be complete, we add the following justification of (*) : we need to

show that :

2

(..) ~- = 1,

which also follows from the hypotheses (i) and (ii) ; I indeed, they imply

that :

for v* c

hence the uniform integrability of

V finite stopping E}

which yields (**).
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(1.4) We now make some comments about the hypotheses and the conclusion

of Theorem 1’ .

- first, remark that ( i ) and ( i i ) imply, using both Jensen’s and Doob’s

L inequalities, that :

for c’  c , E[exp(e’ sup  oo

"

- consequently, ~ is also equal to :

l* = lim{x P{sup|Mt| ~ )};~~
likewise, o~ is also equal to

P((~M+>~)li2 > y)}
y~~ 

[recall that : " M+>t = 0 1(M 
since, from (ii), M->~ is integrable, and in fact admits moments of all

orders.

To summarize, starting from an asymmetric hypothesis about a local martingale

M, the conclusion of Theorem 1’ may be presented in "symmetric" terms ( i. e.

involving only 
The following variant of Theorem l’ seems to have a wider domain of

applicability.

Theorem 1" : Let Xt = Mt + At be an ~+-valued continuous local
sub-martingale such that its increasing process 0) satisf ies : °

~+~  m, for some e > 0.

Then, the following limits exist in IR :
+

l = lim{x P(sup Xt > X and 03C3 = 1 im{y P(X>1/2 ~ y)~0 ~ ~ ~ J
and satis f y : :

(3) 
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The proof of Theorem 1" is quite similar to that of Theorem 1’ ; ; hence, it is

lef t to the reader.

As an illustration, we remark that Theorem 1" applies to : :

, and X~2? - ~ ’ ! , for some ~ > 0,

where : : T = > 1} , , with the local time at 0 of the

Brownian motion B ; ; note that Theorem l’ does not apply to ,t >- 0).

For these examples, (3) becomes :

~(1) - Y - 2 ~(i) - ~ 2 and ~~2) - Y - 2 ~(21 - 1.
These results may also be checked directly, since it is well-known that : :

sup B, 1/ and sup I B I 1/ . 
t~03C41 

whereas: 03C410 ds 1(Bs>0) (law) 1 4 T1 , with

T i = inf {t : : Bt = 1} , , and e is an exponential variable with mean 1.

Finally, concerning possible further generalizations, it would be most inte-

resting to know whether one can avoid the Tauberian argument, and weaken the

hypothesis (+) in Theorem 1".

2. Strictly local martingales, transient diffusions and some remarkable
identities.

(2.1) Our examples will take place in the framework considered by Pitman-Yor

([3], (4) ; 1 (1981, 1982)) and Le Gall ([11 ; ; (1986)) of a regular diffusion

(R , , 0 ~ t  03B6 Pr, > 0  r  oo) on the interval 10,oo[ of IR ; let s( . ) )

denote a scale f unction f or the diffusion, and m the speed measure norma-

lized so that the infinitesimal generator is 1 2 d dm d ds . We assume :

(i) 03B6 = inf{t > 0 : Xt- = 0 or oo}

(ii) s(0) = -oo , s(oo)  co

(iii) 0 is an entrance point for the diffusion R.

In the sequel, we shall always take s(oo) = 0.

We still need to introduce, for 0  p  oo, the last passage time

Lp = sup{t ~ 0 : : p}, and the expression of the semi-group
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= 

Then, we have the following

Theorem 2 : 1. For 0 ~ r  p  oo,

(4) Pr(L03C1 ~ dt) = - 1 2s(03C1) p*t(r,03C1)dt

2. For every r > 0, and t > 0, the limit

(5) l im a P sup - s(Ru) >- a~ ~
exists, and is equal to :

(6) Er s(Rt) - s(r) - 
1 

t 

du p#(O,r).

In particular, (s(Rt),t >_ 0) is a strictly local martingale.

Proof : : a) For the first statement, see Pitman-Yor (1981).

b) For the second statement, the existence of the limit and its

equality to the left-hand side of (6) follows from (I) in Theorem 1, whereas

Le Gall ([1] (1986) ; ; Theorem 1.1, p. 1222)) expresses the limit (5) as the

right- hand side of (6). 0

(2.2) The most standard example of a dif f usion which satisf ies the above

hypothesis is the Bessel process with dimension d = 2(1+v) > 2, i.e : v > 0.

We then have : : s(p) = - d-2 ’ 1 ,
P

and the identity (4), taken for r = 0, becomes : :

(7) Po (L03C1 ~ dt) = (03C12 2)03BD dt 0393(n)t03BD+1 exp(- 03C12 2t) .

Now, the identity (6) may be written as : :

(6’) Er[ s(Rt) s(r) ] = 1 - (-1 2s(r) t0 du p*u(0,r)) = Po(Lr ~ t)

which, as a consequence of (7), becomes :
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(8 ~0d03C1 03C1203BD (r ) = 1 ~t du 1+03BD du exp(- r2 2u),

where pt(r,03C1) = 1 t 03C1(03C1 r)03BD exp - (r2+03C12 2t) I03BD(r03C1 t)

is the density of the semi-group Q t (r,dp) with respect to dp.

Easy changes of variables then show that (8) is equivalent to

(8’) ~0 03BEd03BE 03BE03BDa03BD-1 exp (- 2 a2 (1 + 03BE2))I03BD(a03BE) - 11 du u u v 

and also to : :

(8") ~ d~ exp(- ~2 2) 
I 

= 

v > exp 2 a v . .

This identity (8") may be verif ied by developing both sides as a series

expansion in powers of a with the help, for the left-hand side, of the clas-

sical formula : :

(9) (2) z v n=O L co (Z~2n . ’

In any case, the identity (8") is a particular case of the Lipschitz-Hankel

integrals ; ; see, e.g., chap. XIII of Watson [6], formula 3, p. 394, which

gives a f ormula for : :

~0 dt t -1 e-p2t2 J03BD(at) ,

with the help of the IF i hypergeometric functions ; ; such formulae are also

found in Lebedev ([2], p. 278, Exercise 12).

For clarity and future reference, we write again the equalities (2) and (6) in

the particular case where Mt = 1 , under P(v), the law of R, starting

from r > 0.

Proposition 1 : The 4 following quantities are equal :
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lim{03B1P(03BD)r (1 (inf Rd-2s) ~ 03B1)}

Y P3~~ ld-2> 1)~ ~~£~i>I * Yl l0 s

(11) E(03BD)r(1 rd-2 - 1 Rd-2t) #l " il * ’1 .
(2.3) Associated with the 2-dimensional Bessel process (R t ,t % 0),

starting from r > 0, there is also the strictly local martingale M~ = log -/--, t
t

which satisfies the hypothesis of our Theorem I’.

In order to obtain the corresponding values of the quantities in (I’) in the

present case, it suffices to divide both sides of (11) by (2v), and to let

v - 0.

Thus, we obtain the following

Proposition 2 : Let be the law of (R ,t * 0), the 2-dimensional
r t

Bessel process starting from r > 0. Then, the following 4 quantities are

equal: :

i +mj« (log1 (inf Rs) . 

i 
> an ; ; i y y y) )

s~t

(12) E(o)r [log Rt - log r] = 1 2 t0 du u e 
- r2 2u

.

we again remark that the identity (12), may be expressed as an integral

identity involving the Bessel function I o , I.e. see (2.4) below.

On the other hand, if we particularize our argument in the proof of Theorem I’

concerning the quadratic variation of M, we obtain, in the present case :

(13) 1 03BD E(o)r {1 - exp(- 03BD2 2 t0 ds R2s)} 1 - Rt - log r]

But, the following formula is known (see, e.g., Yor 18]) :

» j f~ djj = Jv (14) r exp(- 2" 
0 R 

IRt = 

o t’
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Hence, it is deduced from (13) that : :

(15) E(o)r{- ~ ~03BD |03BD=0(I03BD Io)(rRt t) } = E(o)r[log Rt - log r].
It now follows from a classical integral representation of I 03BD(03BE) that :

- ~ ~03BB|03BB=0 I03BB(03BE) = r o du e-03BE(cosh u) = Ko(03BE) (1),

Hence, we deduce f rom (15) and the explicit f ormula f or the semi-group

that : 

(16) 1 t ~0 d03C1 03C1 e-r2+03C12 2t 
~0 du e -r03C1 t (cosh u) = 1 2 t0 du u e- r2 2u.

(2.4) Some remarks following Proposition 2, and formulae (13)

through (16).

i ) We can write f ormula (12) in the form : :

(12 ) , f 2 2 e _ (r 2 ~2u)
~0 0

and, as above with (11) and (12) may deduce this identity (I2’) from

the corresponding identity involving Iv, , and deduced from (11).

ii ) From (14), we can obtain a result similar to, but deeper than, (13),

namely :

lim 1 03BD E (o)r [1 - exp( -03BD2 2 t0 t ds R2s) = 03C1] = - ~ ~03BD|03BD=0+ I03BD(03BE) Io(03BE) = Ko(03BE) Io(03BE)

(1) 
In fact, the ax also follows immedia-

tely from the formula : K03BB(03BE) = 03C0 2 I-03BB(03BE)-I03BB(03BE) sin(03C003BB) (see, e.g., formula (5.7.2),

p. 108 in Lebedev [2]). Also, the formula : K o(03BE) = foo du u) 
is a

particular case of : : 0 du 
e 

-03BE(cosh u)cosh(03BDu).
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where ~ = ~ , , on one hand, and, on the other hand, thanks to the Tauberian

theorem, we find that the same quantity is equal to :

03C0 2 lim{y Por((t0 ds R2s)1/2 ~ y|Rt = 03C1)}

(2.5) An important part of the results presented in Propositions 1 and 2

is well-known ; in fact, some of these results, namely those concerning
l im{03B1 P(sup Ms ~ 03B1)}

in their applications to Bessel processes, form the core of the arguments of

the proof of the main asymptotics of the Wiener sausage, i. e : : Le Gall [I],

Theorem 1.1, and, in part, Spitzer (5].

The results about the asymptotics of ~- y y) are perhaps

less known, although they also appear in Werner [7].

An interesting consequence of Proposition 2 is the following

Corollary : Let 0) be a continuous determination of the argument

around 0 of the 2-dimensional Brownian motion ~0)~ starting from

z ~ 0. Then, we have :
o

lim {03B1P(|03B8t| ~ 03B1)} = lim{03B1 P(sup 03B8s ~ 03B1)} = 1 03C0 il du u exp( - r2 2u)

lim{03B1 P(sup |03B8s| ~ 03B1)} = 1 2 t du u exp(- r2 2u).
a-m ~s~t ~~ J~

Proof : ; Thanks to the skew-product representation of Z, there exists a

1-dimensional Brownian motion (y.,t ~ 0), independent of 0) such

that :

’

0 ~
Hence , we have : |03B8t| (law) 

sup 03B8s (law) (t0 ds R2s) 1/2(sup ~u)(law)(t0 ds R2) 1/2|1|
thanks to the reflection principle. Thus, we have :
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&#x26; K) = 03B1P(sup 03B8s ~ 03B1) = 03B1P(( ds R2)1/2 ~ 03B1),
~ ~t = ~ !~! (~

so that, by dominated convergence, we find :

l im 03B1P ( sup 03B8s ~ 03B1) = E( | 1 | ) l im 03B2P((
t0 

ds R2s)
1/2 

Y fl

and, since : E( ~ y ~) = v 2014 , , we obtain, from Proposition 2, that :

lim 03B1P(sup 03B8s ~ 03B1) = 2 03C0 (1 2 t0 du u e-(r2/2u)).
Likewise, we obtain : 

lim{03B1P(sup |03B8s| ~ 03B1 J} = E[yj lim{03B2P((
t0

ds R2s)1/2 ~ pU

= (E(*1]2 03C0)(1 2 t0 du u e-r2/2u)
and the desired result follows from the next

Lemma 2 : : Define y = sup |y |. Then, one has : E[y ] = v - . .
20142014201420142014201420142014 ~ 

S~l 
~ 12

Proof : Define T = inf{t : jyj [ =1}’ Then, from the scaling property of

Brownian motion, we deduce : (law) 1/ 
(1)1/2

, so that :

= E[1  j = 20142014 ~ du u- 
L(T-~)’~ r(~J~ L J

= 2 03C0 ~0 dv E[e-v2 21] 
* 

t1 2 03C0 J° dv

Now. we have = f" 201420142014. = 2 f" e-v dv (1+e-2v) = 2 10 dx 1+x2 = 2 Arctg(1) = 03C0 2 ,
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* ~so that, finally: E[y ] = - . a
1 2
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