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1 Introduction 

Let M be a n-dimensional connected smooth manifold and Bt an m-dimensional 
Brownian motion on a probability space { O , ~ , P }  with filtration {~-t}. Con- 
sider the (Stratonovich) stochastic differential equation (SDE) on M: 

d x  t = X ( x t )  o d B t  + A ( x t ) d t  . (1) 

Here X is C 2 from R rn • M to the tangent bundle TM with X(x): R m --+ TxM 
a linear map for each x in M, and A is a C 2 vector field on M. The pair 
(X,A) is called a stochastic dynamical system (SDS). Let {el,e2,.. .  ,em} be an 
orthonormal basis for R m. Set X i ( x )  = X(x)(ei), and write Bt fB 1 B m'~ 
Then (1) can be written as: 

m 

dxt = ~ i ( x t )  o dB~ + A(xt)dt  . 
i=l 

Let {Ft(x)}  be the solution to (1) starting from x with explosion time r 
A SDE on a Riemannian manifold is called a Brownian system with drift 

Z if it has (i.e. its associated semigroup has) generator �89 + Lz.  Here A is the 
Laplacian, Z is a vector field and Lz  is the Lie derivative in the direction Z. 
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Its solution is called a Brownian motion with drift Z. Let h be a C 3 function 
on M. The Bismut-Witten Laplacian is A h =: A + 2Lvh. A SDE with generator 
�89 h is called a h-Brownian system. Its solution is called a h-Brownian motion. 

Recall that a SDE is called complete if its explosion time ~(x) = oe for each 
x; it is strongly complete if  the solution can be chosen to be jointly continuous 
in time and space for all time. Such a solution is called a continuous flow. 

The known results on the existence of a continuous flow are mostly on R n 
and on compact manifolds. On R n results are given in terms of global Lipschitz 
conditions. See Blagovescenskii and Friedlin [3]. The problems concerning the 
diffeomorphism property of flows have been discussed by e.g. Kunita [15], 
Carverhill and Elworthy [4]. See Taniguchi [22] for discussions on the strong 
completeness of a stochastic dynamical system on an open set of R n. For 
discussions of higher derivatives of solution flows on R ~, see Krylov [14] and 
Norris [20]. 

On a compact manifold, a SDE with C 2 coefficients is strongly complete. 
In fact the solution flow is C r-1 if the coefficients are C r. Moreover the flow 
consists of diffeomorphisms. See Kunita [15], Elworthy [9], and Carverhill and 
Elworthy [4]. For discussions in the framework of diffeomorphism groups see 
Baxendale [2] and Elworthy [10]. 

In the article, we discuss the regularity of solution flows from a new ap- 
proach. We introduce the notions of "strong p-completeness". Roughly speaking 
a SDE is strongly p-complete, if the map F . ( - )  is continuous in time and space 
for all time while restricted to a smooth p-dimensional submanifold of M. This 
concept reveals the complicated regularity property of the flow. For example the 
flow x + Bt on R" - {0} is strongly (n - 2)-complete but not strongly (n - 1)- 
complete (see example 2 in Sect. 2); on R ~ - ~ ,  for E a smoothly immersed 
curve it is only strongly (n - 3)-complete, n => 3. 

Besides this, strong 1-completeness ttmas out to be a powerful tool for ob- 
taining results on differentiating semigroups (Sect. 9), for getting formulae for 
the derivatives of the logarithms of the heat kernels [12], or for obtaining re- 
lated topological and geometrical properties of the underlying manifolds[17][18] 
via moment stability. The moment stability part is illustrated in theorem 2.4 
below. 

Main Results 

Theorem 2.3 A stochastic dynamical system on a smooth manifold is strongly 
complete i f  strongly (n - 1)-complete. 

Now consider M furnished with a complete Riemannian metric and associated 
Levi-Civita connection. 

Theorem 3.114.1 A SDE on a complete connected Riemannian manifold is 
strongly p-complete i f  it is complete at one point and its derivative flow 
{TxF.} satisfies." for each compact set K and each t > O, 

supE (suplTxFs[ p+6"~ 
xEK \s<=t ) ~ O0 

for some 6 > 0 (6 can be taken to be zero for p = 1). 
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Note for p = 1 we only require the first moment of ITxFtl, so do better 
than a Sobolev type theorem. 

Following from these, we obtain Theorem 5.1 giving criterion for the ex- 
istence of a global smooth flow in terms of the coefficients of the stochastic 
differential equations. A straightforward application of Theorem 5.1 extends 
the standard global Lipschitz result on R n (Corollary 5.2): denote by d the 
differential generator for (1), which is given by 

m , . 

~ f (x ) = -~ ~ V2 f (X~(x ),X'(x) ) + AX ( f  )(x ) . 

Here A x l m i i = ~Z 1VX ( X ) + A  is the first order part of the generator. 

Theorem 5.3/Corollary 5.2 A complete SDE on a complete Riemannian man- 
ifold is strongly 1-complete if 

m 

H1 (x)(v , v) =2{VAX(v), v} + E ( R ( X  i, v)(xi), v) 
1 

m m 1 . 

+ E l V X i ( v ) L  2 - < v x ' ( v ) ,  v> 2 
1 l l V l  - 

is bounded above. Here R is the curvature tensor. It is strongly complete if 
IVXI is bounded and if for some constant c 

m 

2(VAX(v),v} + E(R(Xi,  v)(Xi),v) <= e l v l  2 . 
1 

There are also more refined results: 

Theorem 6.2 Let M = R ~ with its fiat metric. Suppose the coefficients of  the 
SDE have linear growth, then its solution flow consists of diffeomorphisms if  
the first derivatives of its coefficients have sub-logarithmic growth. 

Let r(x) denote the distance between x and a fixed point in M. 

Theorem 8.2 A Brownian motion with drift Z is complete if the Ricci cur- 
vature is bounded from below by -c (1  + r2(x)), and dr(Z) < c(1 + r(x)). 
It is strongly complete if both IVY] 2 and 2 ( V Z ( x ) ( - ) , - } -  Ricx( - , - )  have 
sub-logarithmic growth in the distance function r. 

2 Strong p-completeness: definition 

Let Sp be the space of the images of all smooth (smooth in the sense of extend- 
ing over an open neighbourhood) singular p-simplices. Recall that a singular 
p-simplex in M is a map from the standard p-simplex to M. For convenience 
we also use the term singular p-simplex for the image of a singular p-simplex 
m a p .  

Before giving the definition, here is an example: 

Example 1 [9], [10] Let X(x)(e)= e, and A = 0. Consider the following 
stochastic differential equation dxt = dBt on R n -  {0} for n > 1. The solu- 
tion is: Ft(x)= x +Bt, which is complete since for a fixed starting point 
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x, Ft(x) almost surely never hits 0. But it is not strongly complete. However  
for any n -  2 dimensional hyperplane (or a submanifold) H in the manifold, 
infxc/t~(x, eg) = e~ a.s., since a Brownian motion does not charge a set o f  
codimension 2. 

This leads to the following definition suggested by D. Elworthy: 

Definition 2.1 A S D E  on a manifoM is called strongly p-complete i f  its so- 
lution can be chosen to be jointly continuous in time and space a.s. for  all 
time when restricted to a set K E Sp. 

Example 2 The example above on R n -  {0} (for n > 2) gives us a SDS 
which is strongly (n - 2)-complete, but not strongly (n - 1 )-complete. It is not 
Strongly ( n -  1)-complete from Proposition 2.3. We shall show it is strongly 
(n - 2)-complete. 

First note every singular n -  2 simplex has an extension to a bounded 
Lipschitz map from the cube [0, 1] n-2 to M. Let U be a subset o f  R n-2 
containing a ball radius e > 0. Let f be a bounded Lipschitz map from U 
to R n. We only need to show that the capacity C a p ( f )  o f  f ( U )  is zero. 
For this, the author is grateful to Dr P. KrSger for the following proof. Let 
a = in fxEuf (x ) .  Clearly C a p ( f  ( U ) )  = 0 is equivalent to Cap(2a + f ( U ) )  = O. 
Thus we may assume a > O. Define h : R n --~ R U {c~} as follows: 

dx 
h(y)  t "  

d v t f ( x  ) _ y f - 2  
i 

Clearly h(y)  is superharmonic. Thus h(Bt) is a supermartingale. By the maxi- 
mal inequality for positive supermartingales, we have: 

P ~ s u p h ( B s ) >  n}  < !Eh(O) 
t. 0 < s  

So P{suPo<=sh(Bs ) = c~} = 0. This proves Cap(h-l(cx~)) = 0. Next we show 

f ( U )  c h - l ( c~ ) .  Let y = f ( z )  for z E U, then for some constant c, 

dx dx 
h(y)  

Ju I f (x )  - f ( z ) l  "-2 > cfu Ix - zl "-2 

>= c f - -dx  _ 
Ixl 

Thus C a p ( f  ( U ) )  = 0 as wanted. �9 

For further discussions, we need the following theorem on the existence of  a 
partial flow, taken from [10] based on [15]. See also [4]. 

Theorem 2.1 Suppose X and A are C r, for  r > 2. Then there is a partially 
defined f low (Ft( �9 ), 4( �9 )) which is a maximal  solution to (1)  such that 
i f  Mt(o~) = {x E M, t < ~(x, ~)} ,  then there is a set Qo o f  fu l l  measure such 
that for  all co c Q0: 

1. Mt(o~) is open in M for  each t > O, i.e. 4( �9 ,c9) is lower semieontin- 
UOUS. 
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2. Ft("  , o 9 ) : M t ( ~ o ) ~  M is in C r-1 and is a diffeomorphism onto an 
open subset of  M. Moreover the map: t ~-+ F t ( .  ,o9) is continuous into 
cr-l(Mt((D)), with the topology of  uniform convergence on compacta of  the 
first r -  1 derivatives. 

3. Let K be a compact set and ~/c = infxc/c ~(x). Then 

lim supd(xo,Ft(x)) = c~ (2) 
t /~X(o9) xEK 

almost surely on the set {(K < c~}. (Here Xo is a f ixed point of  M and d is 
any complete metric on M. ) 

From now on, we shall use (Ft, 4) for the partial flow defined in Theorem 2.1 
unless otherwise stated. Note that if the solution can be chosen to be continuous 
in time and space for all time on a compact set K, then the explosion time r 
in the above lemma is infinite (Elworthy [10]). Thus strong p-completeness of  
a SDE is equivalent to ~K = c~ a.s. for all K E Sp. 

Proposition 2.2 I f  the SDE considered is strongly p-complete, then ~N = O0 
a.s. for any p dimensional smooth submanifold N of  M. In particular F can 
be chosen to be C r-1 on any given smooth p-dimensional submanifold. 

Proof Let N be a p dimensional submanifold. Since all smooth differential 
manifolds have a smooth triangulation (Munkres [19]), we can write: N = UVi. 
Here V/ are smooth singular p-simplices. But ~vi = ~ a.s. for each i from 
the assumption. Thus F.( �9 )IVi is continuous a.s. and so is FIN itself. This 
gives i N = c~ almost surely. The existence of a C r-1 version comes from a 
uniqueness result from [10]. �9 

Note that if 6:A p ---+ M is a smooth p-simplex, then by [10], strong p- 
completeness implies that Ft o a has a C r-1 version. 

I f  p equals the dimension of M, strong p-completeness gives back the usual 
definition of strong completeness, i.e. the partial flow defined in Theorem 2.1 
satisfies infxeM r = cc almost surely. In this case we will continue to use 
strong completeness for strong n-completeness. 

Theorem 2.3 A stochastic dynamical system on a n-dimensional manifold & 
strongly complete i f  strongly ( n -  1)-complete. 

Proof Since we have strong completeness for compact manifolds, we shall 
assume M is not compact in the following proof. Let B be a geodesic ball 
centered at some point p in M with radius smaller than the injectivity radius 
at p. Since M can be covered by a countable number of  such balls, we only 
need to prove ~9 = cx~ almost surely. 
Let B be such a ball. Clearly M -  0B consists of  two parts, one K0 say 
bounded and the other No unbounded. Fix T > 0. By the ambient isotopy 
theorem there is a diffeomorphism H from [0, T] x M to [0, T] x M given 
by: (t,x)~-+ (t, ht(x)) for ht some diffeomorphism from M to its image, and 
satisfying: 

ht l~B = F t I ~ B  �9 
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Set Kt = ht(Ko ),Nt = ht(No ). Then 

and 

on {co ' t  < ~(co)}. NOW 

M = Kt U Ft(  OB ) U Nt , 

F , (B)  c K~ (3) 

U Kt = Proj l [H(/~0 x [0, T ] ) ] ,  
O<-t<-T 

here Proj 1 denotes the projection to M. Thus U0<t_<T/r is compact. By (3), 
Ft(B) = Ft(Ko) U Ft(OB), for 0 < t < T A ~B, stays in a compact region. So 
~B > T almost surely from part 3 of Theorem 2.1. �9 

Application of strong p-completeness 

Let Coo(OP) be the space of C ~ smooth p forms on M, HP(M,R) the pth 
de Rham cohomology group, and HP(M,R) the de Rham cohomology group 
for compactly supported p-forms. Recall that a SDS is said to be strongly 
pth-moment stable if for all K C M compact, 

#K(p) = 1-f~ sup -1 logElTxFtl p < O. 
t oox~x t 

The following theorem follows from an approach of [8] for compact manifolds. 
For a discussion of such topological consequences of strong moment stability 
on noncompact manifolds, see [17]. 

Theorem 2.4 Let M be a Riemannian manifoM and assume there is a strongly 
p-complete SDS with stron9 pth-moment stability. Then all bounded closed 
p-forms are exact. In particular the natural map from HP(M,R) to HP(M,R) 
is trivial. 

Proof Let a be a singular p-simplex, and q5 a bounded closed p-form. We 
shall not distinguish a singular simplex map from its image. Denote by Ftq5 
the pull back of the form q5 and (Ft).a = Fto r Then 

f r = f (F , )* r  
(Ft).,x ,~ 

But (Ft).cr is homotopic to r by the strong p-completeness. Thus: 

f = f = f ( F, )* . 
G ( F t ) . ~  a 

Using strong pth moment stability, 

E]fc~] = limEIf(Ft)*(91 < [q~[~ lim fE]TFtl p 
O" l O 0  f f  t "---> CX3 G 

= ~rn supElTxFtl p = O. < I~loo, x ~  

So fo q5 = 0, and ~b is exact by de Rham's theorem. �9 
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Theorem 4.1 below suggests that strong p-completeness is not a major 
restriction given strong moment stability. 

3 Strong 1-completeness 

Take a sequence of nested relatively compact open sets {Ui} such that it is a 
cover for M and Ui C Ui+l. Let 2 i be a standard smooth cut off function such 
that: 

•i { 1 X E U,+I 
= O, xftUi+2. 

Let X i = 2iX, A i = }~iA, and F i. the solution flow to the SDS ( X i , A i ) .  Then F i 
can be taken smooth since both X i and A i have compact support. Let Si(x) be 
the first exit time of F](x) from Ui and S/x = infxcK Si(x) for a compact set 
K. Thus S~ is a stopping time. Furthermore F~(x) = Ft(x) before S K. Clearly 
S K < ~K, and in fact limi__.~ S/x ---- f x as proved in [4]. 
Let 

K( = {Image(o)la : [0,f] --+M is C~,f < oo}. 

Suppose M is given a complete Riemannian metric. Denote by I - [  the norm 
with respect to this metric. Let TFt(v) be the derivative of Ft in the direction 
v, whenever it exists. Note it always exists in probability up to explosion time. 
See [10]. We shall call {TFt( - )  : t > 0} the derivative flow. 

Theorem 3.1 Let M be a complete connected Riemannian manifold. Assume 
there is a point Y c M with 4(2) = oc almost surely. Then ~H = oo for all 
H EK~, i f  

limsupE([TxFsK[Zsjg<t ) ,  ~ / < oc (4) 
j ~  e~xEK 

for every compact set K E K~ and each t > O. In particular when (4) holds 
we have stron 9 1-completeness, and strong completeness i f  the dimension of 
M is less or equal to 2. 

Proof Let Y0 E M. Let ao be a piecewise C 1 c u r v e  parametrized by arc length 
with end points: ao(0) = 2, and oo(f0) = Yo. Denote by Ko the image set of 
the curve. Let Kt = {Ft(x) :x  E Ko}, and at = Fto o0 be the composed curve 
with length Y(o-t). Then at(e)) is a piecewise C 1 curve on {co: t < ~x0(co)}. 
Let T be a stopping time such that T < ~x0, then for each t > 0, 

:o d 
EE(ar)Zr<t < E fl~(Fr(~>(a(s),  (w))lds Zr<t (5) 

o 

Eo 
< fE(zr<tlT,(,)Frl)ds < #0sup E(ITxFrIZr<t). (6) 

0 xEKo 

Assume p{~K0 < e~} > 0. There is a number To with p{~K0 < To} > 0. On 
the other hand there is also a number R(e)) such that R(e)) < oc a.s. and 
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sup d(Ft(2, co),s < R(~o) (7) 
O<_t<To 

following from 4(2) = oc a.s. But by Theorem 2.1, 

lim sup d(Y, Ft(x, co)) = oc (8) 
t /~ ~Ko xCK 0 

almost surely on {~K0 < OO}. So the triangle inequality combined with (7) 
and (8) yield: 

lim supd(Ft(x,o)),Ft(2,~o))> lira [supd(Ft(x,c~),Y) - d(Y, Ft(Y,a)))] 
t/"~Xox~Ko t / f o  kx~X0 

> lira supd(Ft(x, co),s sup d(Y, Ft(s 
tz~KoxCKo O<-t<-T 0 

on {o~ : ~K0 < To). Therefore on this set, 

lim d(o-t(~o)) -> lim sup d(Ft(x,~o),Ft(2,cn)) = oc (9) 
t , z  ~Ko t /~Ko xCKo 

almost surely for t __< To. Let Tj =: S K~ be as defined in the beginning of  the 

section, which converge to ~X0. Then there is a subsequence, still denoted by 
{TA, s.t. on { K0 < r0}, 

lim d(arj)Xr o <70 = oc, a.s. (10) 
j---+oo 

However by equation (6), hypothesis (4) and Fatou's lemma: 

E .lim d(rrrj )ZCx0 < ~0 ~ lira Ed(arj(o~)(co))Zrj < ro 
j---+oo j---* oo  

< d0 lirn sup E[T~Fr;IZrj<ro < ~ ,  
j---+eo xCK 0 

contradicting (10). Thus ~K0 = cx~. In particular r  = cx~ for all y E M. 
Next take K C K~, and replace K0 by K in the above proof to get ~K = c~, 

for we only used the fact that there is a point 2 in K0 with ~(s = co and 
I TFtl satisfies (4). 

To see strong 1-completeness, just notice the set of  smooth singular 1- 
simplices $1 is contained in K~. �9 

Example 3 A. The requirement for the manifold to be complete is necessary. 
e.g. example 1 on R 2 - {0} in section 2 satisfies equation (4) but is not strongly 
complete. In fact if  we apply the inversion map z ~-+ �89 in complex form as 

in [4]. The resulting system on R 2 is (J~,B) where 

I y2 x 2 2xy 
2 ( x ,  y )  = L y 2  _ x " 

The transformed flow Ft(z)= ~ on R 2 by inverting does not satisfy the 
condition of  the theorem on its derivative and it is not strongly 1-complete. 
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B. Theorem 3.1 is sharp in the sense it does not work if equation (4) is 
replaced by SuPxElTxFt [ < cxz. This can be seen by using the above example 
on M = R 2 - {0} but with the following Riemannian metric: 

ivl - rxM Iv1 = 

f01 s This is a complete metric since 5- = e~ so the point {0} is 'at infinity'. 
But for each compact set K and t > 0 

1 
supElTxFt[ # = supE ix + Bt---~[ < oe . 
xEK xEK 

We say a SDE is complete at one point if there is a point x0 in M with 
~(x0) = e~. From the theorem we have the following corollary, which is known 
for elliptic diffusions without condition (4). 

Corollary 3.2 The SDE (1) is complete i f  it is complete at one point and 
satisfies condition (4) of  theorem 3.1. 

4 Strong p-completeness, flows of diffeomorphisms 

Denote by Lp the space of all the image sets of  Lipschitz maps from [0, 1] p 
to M. As in the last section, we assume that M is connected and is given a 
complete Riemannian metric. 

Theorem 4.1 Assume that the SDE (1) is complete at one point. Let 1 < 
p < n. Then ~i~ = oc for each K E Lp, i f  for each positive number t and 
compact set K there is a number 6 > 0 such that: 

supE (suplTxFslP+azs<~ < ec .  (11) 
xEK \s<=t / 

In particular this implies strong p,completeness. 

Proof  Let a be a Lipschitz map from [0, 1] p to M with image set K. Take a 
compact set k with the following property: for any two points of K, there is 
a piecewise C 1 curve lying in / s  connecting them. 

Let x = o-(s__) and y = a(t)  and a be a piecewise C 1 curve in k connecting 
them. Denote by Ha the image set of a and E its length. By proposition 3.1, 
~n~ = e~. Thus for any To > 0 we have: 

Esup[d(Ft(x),Ft(y))] p+6 <= E suplT~(s)Ftlds 
t<ro \o  t<:~o ) 

< EP+a-IEf T~(s)Ft] p+6 ds 
0 = 

_<  p+ sup @sup [r/F,I 
xCI~ t<To ) " 
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Taking infimum over a sequence of such curves which minimizing the distance 
between x and y, we get: 

The Lipschitz property of the map a gives 

Thus we have a modification F . ( a ( - ) )  of F. (a ( - ) )  which is jointly continuous 
from [0, To] • [0, l] p ---+ M, according to a generalized Kolmogorov's criterion 
(see e.g. [10]). So for a fixed point x0 in M: 

sup sup d(Ft(~(s),co),x0) < oc .  
tc[0,r0] s_e[0,1]p 

On the other hand on {~K < oc}, limt ~U SUpx~x d(Ft(x, co),xo)= ec almost 
surely. So ~K has to be infinity. 

Finally strong p-completeness follows from the fact that every singular p- 
simplex has an extension to a Lipschitz map from the cube [0, 1] p to M (by 
squashing one half of the cube to the diagonal). �9 

Remarks. 1) As a consequence, we get that a SDS is strongly complete if it 
is complete at one point and satisfies: 

supEsuptTxFs] n-l+a < oo 
xCK s<=t 

for some c~ > 0 and for each compact subset K of M. On the other hand, any 
direct application of a Sobolev type inequality would require that the above 
integrability condition holds for a pth power (p > n) of tTxFtt. 
2) Note condition (11) in the theorem cannot be replaced by SUPx6gEITxFtl p+a 
is finite, since the flow x + Bt with the complete Riemannian metric (,)# in 
example 3 (section 3) satisfies: for p < n, SUpx~KE(ITxFtl#) p < oc. 

Flows of diffeomorphisms 

For the diffeomorphism property, we only need to look at the "adjoint" system 
of (1): 

d y t  = X ( y t  ) o a B t  - A ( y O d t .  (12) 

A strongly complete SDE has a flow of diffeomorphisms if and only its adjoint 
equation is also strongly complete. See Kunita [15]. See also Carverhill and 
Elworthy [4]. Suppose there is a uniform cover for (X,A). Then its flow consists 
of diffeomorphisms if for each compact set K, 
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( / 1) n - l+6)  
supEsup 1TxF=In-'+6 + (ITF~-,(x)F~I- < c~,  
x E K  s < t  

since in this case both equation (1) and (12) are strongly complete by the 
previous theorem. In this case we also have the C0-property, i.e. the associated 
semigroup preserves Co(M), the space of continuous functions vanishing at 
infinity. See [11]. 

5 Existence of  smooth flows 

Let M be a Riemannian manifold with Levi-Civita connection V. There is the 
stochastic covariant differential equation 

dvt = VX(vt)  o dBt + VA(vt)dt .  (13) 

Denote by TxFt(v) its solution starting from v. It is in fact the derivative of 
Ft(x) in measure. See [10]. Let x0 E M, v0 E Txo M. We shall write xt = Ft(xo), 
and vt = TxoFt(vo). 
The expectations of the norms of I vt] can be estimated through the following 
equation (see e.g. Elworthy [7], or [6]): 

on {t < ~}. Here 

m t 
Ivtl p =Iv01 p + pEflv=lp-2(vxi(v=), v=)dB~ 

i=10 
p t  

+ ~flv=lp-Nsp(xD(v,, v=)ds (14) 

m 

Hp(x)(v, v) =2(VA(x)(v), v) + y]~(V2Xi(X i, v), v) 
i=1 

m m 
+ E ( v x i ( v x ' ( v ) ) , v )  + ElVXi(v)l  2 (15) 

1 1 
m 1 

+ (p  - 2 ) ~  (VX'(v), v) 2 , 

for all x E M and v E TxM. To simplify notation, let 

X i m t (V "'(v=),V=)dR i (16) 
Mf = EPfl o rv=[ 2 - - = '  

p *eHp(x,)(v,, v=), 
a p = 52  ~ ~ as .  (17) 

Here M p and a p depends on the point (x0, v0) E TM. We shall omit the su- 
perscript p if no confusion is caused. Then Eq. (14) gives: 

ivtl p = lvolPe~; <=P~=~>' ~4 (18) 

as used by Taniguchi I221. Let IX(x)]2 = ~ IX=(x)l =, and let IVX(x)12 = 
E 7  Ivx~(x)?. We have: 
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Theorem 5.1 Let M be a complete connected Riemannian manifold. Suppose 
the SDE (1) is complete at one point. Let p > O. Assume there is a function 
f : M --+ [0, oo) such that: ( '  ) 1. supxcxE e6P fs f(Fs(x))z,<r < eC, for all t > O,K compact. 

2. IVX(x)l 2 _< f(x). 
3. Hp(x)(v, v) < 6pf(x)lvl  2 for all x E M and v E T~M. 

Then the system is complete and 

c ( "  ) E suplTxFs[ p < c E  e 6p fs  . 
\s<t / 

In particular the system is strongly d-complete for d < p. 

Proof First we assume that the SDE is complete. Applying Schwartz's in- 
equality to equation (18), we get for each p > 0: 

E \s<=t(suplvs]P~/ =< Iv~ \(Esupe2Ms-<M'M>s) \(Esupe2as~�89 / 

Since 

( e6p2f~ ) 

e2M_ <u,~ls is a martingale by Novikov's criterion [21]. Consequently 

E(supe2M~-<M,M>s~<=4supE(e2M,-<M,M>s) 
\s<t / s<=t 

1 
=4supE(e2M~-4(M,M)se3(M,M)s) <= 4[E(e6(M,M)t)] ~ 

s<t 

by Cauchy Schwartz and using the fact that e 4Ms-s(M'M)s is a supermartingale. 
Also 

giving 

E(supe2as) = E  supe pf~ IVs[2 ~ E e6p2fof(xs)ds 
\s<t / \c~<t 

3 

E(sup]vslP~ks<t / <= 2]vo]P IE(e6P2fof(xs)ds)]4 < oo. 

Thus for some constant c2 (depending only on p and n), 

\s<=t / 

Thus for each compact subset K of the manifold, 



Strong p-completeness 497 

supE sup[TxFs] p < c2supE e 6p f(Fs(x))ds < (30. 
xEK \ s < t  / xEK 

Next assume (1) is complete at one point, we shall show that it is complete 
everywhere. Let K E K~ be a compact subset of M, and let S f  be stopping 
times as in Theorem 3.1. Then 

ITxFtAssK(Vo)I = [vole \ 

Similar calculations as above yield: 

supE(lTxFsjx[Zsjx<t)<csupE( e6p2fsff(Fs(x))dsl'lr ) 
xEK xEK S~ < t 

Here c is a constant. The completeness follows from Theorem 3.1. The strong 
completeness follows from Theorem 4.1. �9 

Note that the first condition in Theorem 5.1 is a workable condition, since 
Jensen's inequality gives: 

Ee(6pZfof2(xs)Zs<r162 (19) 

For example, take f - I in Theorem 5.1. Let A x = �89 ~ 1  VXi(Xi) + A, and 
let R be the curvature tensor on M. Recall that the differential generator ag is 
given by 

i n  , . 

ag f (x )  = ~ i  V2 f(XZ(x),X'(x)) + AX(f)(x) .  

We next see that the theorem is a direct extension of the global Lipschitz 
results for Rn: 

Corollary 5.2 The SDE (1) is strongly complete if it is complete at one point 
and satisfies: tXTX{ is bounded and 

m 

2(VAX(v),v) + E<R(Xi, v)(xi),v> <__ clvl  2 
1 

for some constant c. In fact under these conditions, 

sup E (suplTxF,[P~ < oo, for  all p .  
xEM \s<=t / 

The solution to (1) consists of diffeomorphisms if also the "adjoint" equation 
(12) is complete at one point and 

i n  

2(V(-A)X(v),v) + E(R(Xi, v)(Xi),v) <= c[v[ 2 . 
1 
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Proof First 

1 m m 
VAX (v) = = ~'~v2Xi(v,X i) + l y'~vxi(vXi(v) ) + VA(v). 

Z l  2 1  

But by definition of the curvature tensor, 

(V2Xi(X i, v), v) - (V2X%Xi) ,  v> = (R(X ~, v)(X~), v). 

So 

Thus 

m . . 

(VAX (v), v) =(VA(x )(v), v) - -~ (R(X ' ,  v)(X'), v} 
2 1  

m 1 m . . 

1 2 ~ x ~ v z ~ ( v x ' ( v x ' ( v ) ) , v )  +~<vx(T ' )'v>+ 
Z 1 

/9/ 

Hp(x)(v, v) =2(VAX(v), v} + ~ (R(X  i, v)(Xi), v) 
1 

m m 

+ ~lVXi(v)L 2 + ( p -  2 )~  1~12 <vxi(v), v) 2 
1 

Note the last two terms of Hp are bounded. Thus the conditions of Theorem 5.1 
are satisfied, and the SDE is strongly complete. For the diffeomorphism prop- 
erty, note that the 'adjoint' equation has 

m 

Hp(x)(v, v) =2(V(-A)~(v),  v) + ~ (R(X  i, v)(Xi), v} 
1 

m In  1 

+ ElVXi(~)t21 + (p - 2 ) E ~  <vx'(~), v) 2 , 

and is thus also strongly complete. �9 

However for strong 1-completeness, we can do better: 

Theorem 5.3 Assume (1) is complete at one point, and Hl(X)(V,V) < c[vl 2 for 
some constant c. Then we have strong 1-completeness for (1). Furthermore 
if the dimension of M = 2, then it is strongly complete. 

Proof Let K C K~, and S K be the corresponding stopping times as in Theo- 
rem 3.1. Then 

m tAsf 
IVtAsKI =IVoI + ~ f Iv~I-a(VX~(v~),v~)dB~ 

J i = 1  0 

1 tAsX 
+ g  f Iv~t-lH1(vs,~s)ds 

0 

(20) 

from eq. (14) with t replaced by t A S K, and letting p = 1. On the other hand, 
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Ir g,A((Vo)[ = Ivole \ 

by (18). But (M,M)tAsy and atAsj~: are both bounded, since both IVXi(x)l and 

Hi(x) are bounded on compact sets. So ]TxFtAsy(V) [ is bounded for each j and 

v E TxM. Thus 
tAs~ 

E f -- 0 .  
0 

Therefore, 

1 tAsy 
E[TxFtAs~:(vo)l = ]v0l + : E  f ]Vsl-lgl(vs, vs)ds 

j Z 0 

1 t 
-< I ol + -cfEITxfsAsK( o)lds 
- 2 0  J 

Gronwall's inequality gives: E]TxFs~ At(Vo )] < ]Vole ct/2. So 
J 

E(lrxFs~:l)&~<t ) < EITxFs~:At I < e ct/2 . (21) 
J J J 

The strong 1-completeness follows from Theorem 3.1, and the strong complete- 
ness for 2-dimensional manifolds follows from Theorem 2.3. �9 

It is possible to get a slightly different result from Theorem 5.1 using the fact 
that 

[vtlP = ivolPeMre~ fo o,x~xlv~l 2 ..... ) 

where 
m 

I2I(x)(v, v) =2(VAX(x)(v), v) + ~-~(R(X i, v)(xi), v) 
i = 1  

m m 1 

+ E]VX~(v)[2-1 2~l-~(VX'(v)'v)2'" 

and the fact [21 ] 

(22) 

E supe~Mf < E eSUp~<:t"MP < ~ , 
s < t  

if  Ee 2"2(Mpyp)t < ~ .  So just as before, if ]VX] is bounded, then we have 
strong completeness if H is bounded above. This allows consequent variations 
in the results below. 

6 E x i s t e n c e  o f  f lows  on R ~ 

In this section we shall show some direct consequences of Theorem 5.1. The 
usual global Lipschitz condition is improved to allow some growth of the 
derivatives of the coefficients (see Theorem 6.2). Consider on R n 
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(Itd) dxt = X ( x t )  dBt + A(x t )  d t .  (23) 

It can be rewritten in Stratonovich form: 

dxt = X(x t )  o dBt + f t(xt)dt  , 

where fl = A - �89 ~-~T DXi(Xi ) .  So 

m 1 �9 

Hp(v, v) = 2(DA(v), v) + tDX(v)I 2 + (p  - 2)I~T- ~ (DX'(v),  v) 2 . (24) 

Thus the second derivative of X is not involved. Let g" R ~ ---+ [0, o~) be a C 2 
function. Then by It6's formula, on {t < ~} 

eO(Xt ) • e g ( X o ) + N , -  (N~2 )' +bt , (25) 

where Nt = Yo Dg(X(xs)dB~) and 

t 1 m 

b~ = f 2  E ([(Dg)(x~)(Xi(xs))] 2 + (D2o)(x~)(Xi(xs),Xi(x~))) ds 
0 1 

t 

+ f(Dg)(xs) (A(x~))ds .  
0 

Lemma 6.1 Let  c be a constant. Let  v be a stopping time with v < ~ on 
{4 < go}. Then for  some constant k 

Ee(CO(XtA~)) < eC(g(xo)+ kt) 

provided that 

[Dg(Xi)[2 + - ~ D 2 g ( X ~ , X  z) § Dg(A) is bounded above.  

Proof  Replacing t by t A ~ in (25), and g by cg, then taking expectations on 
both sides of the inequality above, we get the required inequality. 

Theorem 6.2 The S D E  (23) on R n with C 2 coefficients is strongly complete 
i f  its coefficients have linear growth (in an extended sense), i.e. 

2 1 IX(x)l <_- c(1 + Ixl )~ 

(x,A(x)) < c(1 + Ixl2), 

and the derivatives o f  the coefficients have sub-logarithmic growth, i.e. 

IVX(x)I 2 < c[1 + ln(1 + Ix12)] (26) 

(VA(x)(v) ,v)  <= c[1 + ln(1 + [xi2)]lvl 2 (27) 

for  all x and v E R". Here c is a constant. In fac t  under these conditions we 
have: 
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Elxtl 2p ~ Cl,p(1 -[- Ix012) p eC2,P t 

for some constant Cl,p and C2,p depending only on 
saps__<, ITxF~I p is finite for all p and compact sets K. 

p and SUPxcKE 

Proof Let f ( x )  = [1 + ln(1 + [xl2)],g(x)= ln(1 + [x[2). Then 

Df(x)(A(x))  = Dg(x)(A(x)) -- 2(x,A(x)) 
1 +  Ixl 2 ' 

and 
D2 f (x ) (Xi (x ) ,X i (x ) )  = 2(Xi(x),Xi(x)) 4(x, Xi(x)) 2 

1 + Ix? (1 + Ixt2) 2 " 

So by the previous lemma (applied to the function g), 

E[xtAT[ 2 < (1 + [xo[Z)e k i t -  1 

for some constant kl and stopping times T with T < 4. Thus the system is 
complete by a standard argument. Applying the same lemma to cf, we have: 

EeC[l+ln(l+lxt[2)] <= eC(1 + [xolZ)ce kt 

for some constant k(k may depend on c). So 

t 2 = suplfe6P ct( 1 + [xol2)ek~d s < supE(e6P 2 f~ c[l+ln(l+[xs] )]ds) t 2 

xEK xCK t o 

The strong completeness follows from Theorem 5.1, using (24) and the as- 
sumptions on VX and VA. �9 

For related estimates on E[xt[ p, see [14]. Note that there is a stochastically 
complete SDE on R 2 with [VX(x)[ < Ix t but which is not strongly complete: 

(o 0) let A = 0, and X(x , y )  = x2 . See Kunita [16]. 
T 

A different choice of the function f in Theorem 5.1 leads to an improve- 
ment of a theorem of Taniguchi [22]: 

Corollary 6.3 The SDE (23) on R n is strongly complete i f  for some ~ > O: 

W(x)I _-_% c(1 + Ixl2)& -~ 

(x,A(x)) < c(1 + [x[2) 1-~ 

IDX~(x)l 2 <= c(1 + Ixl2) ~ 

(VA(x)(v),v) <= c(1 + I x l 2 ) ~ l v l  = , 

Proof Clearly the stochastic differential equation is complete. Take g(x )=  
e(1 + [x[2) ~ in the lemma for e > 0(e = 0 gives the usual globally Lipschitz 
continuous condition). Then 
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Dg(x)(A(x)) = 2c~(1 + Ix]2) ~-1 {x,A(x)),  

DZg(x)(Xi(x),Xi(x))  =2cg(1 + Ix[2) ~-l Iy i (x) ,y i (x) )  

+ 4ce (e -  1)(1 + I x l 2 ) e - 2 ( x ,  y i ( x ) )  2 . 

So lemma 6.1 applies to get Ee cg(xt) < e c(9(xo))+2kt for some constant k and the 
result follows from theorem 5.1. �9 

This theorem improves a theorem of Taniguchi since: (a) We only need 
growth conditions on the normal parts of  A and VA, and (b) we do not assume 
e > 1 as in [22]. 

7 Existence of flows on manifolds with a pole 

A similar argument on the existence of flow (c.f. theorem 6.2) to that on 
R n works for general manifolds to allow the coefficients to have unbounded 
derivatives. We first assume that M is equipped with a Riemannian metric such 
that there is a pole P in M, i.e. the distance function r ( - )  : M + R from P 
is smooth. Recall that A x = �89 ~ T  v x i ( x i )  + A. 

Theorem 7.1 Let M be a complete Riemannian mtmifold with a pole. Assume 
the sectional curvature is bounded from below by - L Z ( r ( - ) ) .  Here L is a 
nondecreasing function bigger or equal to 1. Then the SDE (1.1) is complete 
and 

E [ r ( x t ) ]  p <= [1 + r ( x o ) ] P e  k~ 

for some constant ko, i f  the following holds for some constant c: 
1. [X(x ) l  2 < c[l+r(x)] . 

= L(r(x))coth(r(x)L(r(x)))' 
2. dr(AX(x)) < c{1 + r(x)]. 

It is strongly complete and supxcx E sups<=t [TFsl p < oc for all p and compact 
sets K, i f  we also have: 

3. IVX(x)/2 __< 41 + in(1 + ,'(x))]; 
4. 2(VAX(v), v) + E T ( R ( X  i, v)(Xi), v) < c[1 + ln(1 + r(x))]lv[ 2. 

Proof First we have: 

t l m t 2 
r(x,) =r(x0) + f&(X(xs)dBA + = E f v  r(Xi(x,),X'(x,))ds 

0 Z 1 0 
t 

+ fdr(AX(xs) )ds .  
0 

But by Hessian comparison theorem in [13] (p.19 and example 2.25 on p.34. 
The results there is for constant L, but the proof depends only on the behaviour 
of the manifold around the geodesic from p to x), 

V2r(x) =< L(r(x)) coth (r(xK(r(x))). 
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Let Tn(x) be the first exit time of  Ft(x) from the geodesic ball B(p, n), centered 
at p and radius n. Then 

1 m tar.  
Er(XtAr.) =r(xo)  § - ~ E  f V2r(Xi(xs),Xi(xs))ds 

2 1 o 
tATn 

+ E  f dr(AX(x~))ds 
0 

<r(xo) + - f  .lE;gs<r,(l~ + r(xs))ds . 

Here kl is a constant. Thus 

Er(xtArn) < 

So 
1 

P { r .  < t} = -e(r(xtAr.)Zr. <,) 
/,/ 

< - r(xo) + ---+ O, 

as n goes to infinity. Thus there is no explosion. Now 

t 

[1 + r(xt)] p =[1 + r(xo)] p § p f[1 + r(Xs)]p-ldr(X(xs)dBs) 
0 

+ p ( p ?  1) m t 
~ f [ 1  + r(Xs)]P-2[dr(Xi(xs))]2ds 

1 0 

m t 
+ PEf[1 + r(Xs)]P-lV2r(Xi(xs),Xi(xs))ds 

z- 1 0 

t 

+ p f[1 + r(Xs)]p-ldr(AX(xs))ds. 
0 

Let 
t dr(X(xs)dBs) 

M t =  J p  -l ~r~-~) ' 
0 

and let 

1 m t ( .[dr(Xi(xs))]2 ~72r(Xi(xs),Xi(xs))~ 

r ; :  + p f  (A ( D ) d s  
o + (~)  

We have: 
[1 § r(xt)] p = [1 § r(xo)]Pg(Mt)e bt . 

Here #(Mt) = e ~t-l(M'M)t. But bt is bounded from the assumptions. So 
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E[1 + r(xt)] p <= [1 + r(xo)]Pe k~ 

for some constant ko. Thus 

sup E(e6P 2 1 t (  ) ~0 c[l+ln(l+r(Fs(x))]ds) ~ 7supfE  e6p2ct[l+ln(l+r(Fs(x)))] ds 
xcK ~ x~Ko 

1 6c_2t t ( F(Fs(x))]6cp2s ) < - e  L, supJE [ 1 +  ds < 
: t xCKo 

So Theorem 5.1 applies to the function f ( x )  = c[1 + ln(1 + r(x))] to get the 
strong completeness. �9 

Remarks. 
(i) From the above calculations we also get, for each p > 0: 

P{T, < t} ~ 1 [ 1  + F(xo)]Pe ko[l§ " 

(ii) Note that if the sectional curvatures are nonpositive, then V2r(x) > 0 and 
so V2r(x) < Ar(x). If the Ricci curvature has lower bound - L 2 ( r ( - ) ) ,  where 
L is as before. Then [13] 

Ar( - )  < ( n -  1)L( r ( - ) )  coth (rL(r(-)) .  (28) 

In this case the theorem holds without further assumptions on the sectional 
curvatures. 
In general, let g : M ---, R be a C 2 function, then 

1)~ 
e g(xt) =e  g(x~ + fddg(X(xDdBs) + eg~[dg(Xi(x,))]2ds 

0 ~0 1 

,( . ) + fo eg dg(AX(xs)) + 2 V(dg)(X'(xs),X'(xs)) ds.  

By Gronwall's inequality Ee o(xt) < eg(XO)e kt if  dg(X i) is bounded for each i 
and ~ Vdg(Xi,X i) + dg(A x) is bounded above. Using g(x) = (1 + r(x)) ~, a 
similar proof to that of Corollary 6.3 gives: 

Proposition 7.2 Let M be a complete Riemannian manifold with a pole. As- 
sume its sectional curvature is bounded from below by - L 2 ( r ( - ) ) .  Here L is a 
nondecreasing function bigger or equal to 1. Then the SDE (1.1) is complete 
i f  for some e > O: 

c[l+r(x)]2-* IVX(x)l 2 < c[1 § (r(x))]*; 1. IX(x)[ 2 ~ L(r(x)) coth (r(x)L(r(x))); ---- 
2. dr(AX(x)) <= c[1 q-r(x)]2-~; 

It is strongly complete, if  also 
3. Hp(x)(v,v) <= e[1 +(r(x))]~[vl 2, f o r  some p > O. 

Note that this relaxes the conditions on the derivatives, compared to theorem 7.1 
but imposes more stringent bounds on the coefficients. 
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8 Strong completeness of nondegenerate equations 

In this section we shall assume that the SDS considered is a Brownian motion 
1 m with drift Z, i.e. X * X  = Id, and Z =:A x = ~ ~-~1 VXi(Xi )  + A. 

Recall that R is the curvature tensor and Ric is the Ricci curvature. Then 

m 

~-~(R(X i, v)(Xi), v) = -Ric(v, v) ,  
1 

giving 

m 

Hp(x)(v, v) =2(VZ(v),  V)x - Ricx(V, v) + ~-~lvXi(v)l 2 
1 

m 1 
+ ( p  - 

l IVl 
(29) 

Theorem 8.1 Let M be a complete Riemannian manifold Assume IV)([ is 
bounded and �89 v) - <VZ(v), v) > -clvl 2 for some constant c. Then the 
Brownian motion with drift Z is strongly complete i f  complete. 

Proof This follows from theorem 5.1 by taking f - 1. �9 

In particular suppose the drift is Vh for a smooth function h. Then we have 
1 Ric-Hess(h) is bounded from strong completeness if IVXI is bounded and if 

below, since a h-Brownian motion is complete if �89 Ric-Hess(h) is bounded 
from below. See [1]. 

Let p be a point in M. Let r(x) denote the Riemannian distance between 
p and x. The results in the last section hold for h-Brownian motions without 
the assumption that there is a pole for the manifold. Let c be a constant. 

Theorem 8.2 Let M be a complete Riemannian manifold. Assume the Ricci 
curvature is bounded from below by -c (1  + rZ(x)). Here c is a constant. 
Suppose dr(Z(x)) < c[1 + r(x)] outside the cut locus cut(p) of  p, then the 
Brownian motion with drift Z is complete. Furthermore let p > 1, then 

E[r(xt)] p <= [1 + r(xo)]Pe k~ for some constant ko. It is strongly com- 
plete and 

supE (suplTxf~lP~ < 
x E K  \ s < t  / 

for each t > 0 and compact set K, i f  the following also holds: 
1). ]VX(x)I 2 =< c[1 + ln(1 + r(x))], 
2). Ricx(V,v) - 2(VZ(v),V)x > -c[1 + ln(1 + r(x))]lvl 2. 

Proof The proof of theorem 7.1 works here, noticing the following two points: 
A. The Ito formula for [1 + r(xt)] p (in the proof of Theorem 7.1) holds with 
a correction term LP: 
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t 

[1 + r(xt)] p =[1 + r(xo)] p + p f [ 1  + r(x~)]P-ldr(X(xs)dBs)  
o 

+ P ( P ?  1 ) ~ f [ l  -- + r(Xs)]P-2[dr(Xi(xs))]2ds 
1 o 

p m t  
+ - ~ f [ 1  + r(Xs)]p-lAr(xs)ds 

z- i 0 

t 

+ p f [1  + r (xD]P- ldr (AX(xDlds  - L p . 
o 

where L p > 0 and Ar and dr are defined to be zero on cut(p). See [5]. 
B. When x does not belong to the cut-locus C ( p )  of p, there is the fol- 

lowing estimate from [13] (p.26 and (2.27) on p.35): 

[Ar(x)[ <__ ( n - 1 ) ~ c o t h  ( r ( x ) ~ )  , 

Note also Y-~ V 2 ( X i ( x ) , X i ( x ) )  = Ar(x).  However the cut-locus C ( p )  has mea- 
sure zero, and so the Brownian motion spends zero amount of  time on the 
cut-locus by Fubini's theorem, since it has a density with respect to dx for 
dx the Riemannian volume measure. So the proof of  Theorem 7.1 follows 
through. �9 

Note that this method could also applied to the case of  the Ricci curvature 
is bounded below by - L 2 ( r ( - ) ) ,  where L is a nondecreasing function greater 
or equal to 1, just as in theorem 7.1. 

Gradient Brownian systems 

Let f : M  ~ R m be an isometric embedding. Let X ( .  ) ( e ) =  V ( f ( .  ),e). 
Such systems are called gradient Brownian systems. Let v~ be the space of 
normal vectors to M at x. There is the second fundamental form: 

~x : TxM X T x M - +  vx 

and the shape operator: Ax : TxM x vx ~ TxM related by (ex(Vl,V2),w) = 
(A~(Vl,W),V2). Let {el} be an orthonormal basis for R m. I f  Y(x): Rm-+ Vx 
is the orthogonal projection, then [10] [6] 

v x i ( v )  = Ax(v, Y(x)ei )  . 

Let f b . . - f n  be an o.n.b, for TxM. Consider c~x(v, �9 ) as a linear map from 
TxM to v~. Denote by [ctx(v, �9 )[~,s the corresponding Hilbert Schmidt norm, 
and [ �9 [~x the norm of a vector in vx. Accordingly we have: 

m m n 
i 2 ~ I V X  (v)lx = ~ ( A x ( v ,  Y ( x ) e i ) , f j )  2 ~ ( e x ( V ,  f j ) ,  Y(x)es) 2 

1 i = l j = l  i = 1 j = I  

= = " )IH, S ,  
j=l 
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and 

This gives 

i n  �9 

1 

Hp(v, v) = - Ric(v, v) 4- 2(VZ(v), v) + I~x(~, �9 ) 1 ~  

Further, Gauss's theorem: Ric(v, v) = (a(v, v), trace ~} -lofty, �9 )[~,s gives 

Hp(v,v) = - (a(v,v),trace a) + 2lar(v, �9 )1~3 

1 
+ -~(p-2)lc~x(v,v)b~x + 2 ( v z ( v ) , v ) x .  (31) 

Thus the completeness and strongly completeness of a gradient Brownian mo- 
tion rely only on bounds on the second fundamental form and on the drift: 

Corollary 8.3 Let M be a closed immersed submanifoM of  R m with its sec- 

ond fundamental form ~ bounded by c[1 + ln(1 +r(x))]�89 Then a gradient 
Brownian motion on M with drift Z is strongly complete i f  

dr(Z)  <= c[1 + r ( x ) ] ,  

and 
(VZ(v),v)x < e[1 + ln(1 + r ( x ) ) ] l v l  2 . 

It has a flow of  diffeomorphisms if  also IZ(x)l _-< eel + r(x)], and IVZ(x)l _<- 
c[1 + ln(1 + r(x))]. 

Proof  The strong completeness is clear from theorem 8.2. The diffeomorphism 
property comes from the fact that for gradient Brownian systems [7], 

m 

~ v x ~ ( x  ~) = o.  
1 

So the 'adjoint' Eq. (12) to (1) is also a gradient Brownian system (with drift 
-Z) .  �9 

Let Z = 0, we get the following useful corollary: 

Corollary 8.4 Let M be a complete Riemannian manifold isometrically im- 
meresed in R m with its second fundamental form bounded by c[1 + ln(1 + 

r(x))]�89 Then the gradient Brownian motion on it has a flow o f  diffeomor- 
phisms. 

See also Baxendale [2] for a discussion of flows on manifolds with second 
fundamental form bounded and globally Lipschitz. 
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According to Theorem 5.3, a SDS is strongly 1-complete if it is complete 
and ifHl(X)(V, v) < c]vl 2. But for gradient Brownian systems, we can do better. 

Let 8(Mr) = e Mr1 - <M1~1>~ where Mt 1 is as defined before theorem 5.1 and 
2 ' 

let f ( x )  = supF~j= 1 Hl(x)(v, v). Then we have: 

Proposition 8.5 Let M be a closed immersed submanifold o f  R n. Then a 
stochastically complete gradient Brownian system is strongly 1-complete i f  

supE e �89 f(F~(x))ds < oc 
xEK 

for all compact set K and bounded stopping times 7". 

Proof. We shall use the notations of  theorem 5.3. Let 

L = g , -  f~r(xA ~x~ [~l'lv~l as 

and let ;?t and 5t be the solutions to the stochastic differential equation 

dx, = X(x,) o d~, + A(xt)dt (32) 

and the stochastic covariant equation: 

dvt = VX(v t )  o dJBt + VA(vt)dt  

respectively. For x E M, choose an o.n.b. {el , . . . ,em} for R m, such that 
{X(x)(ei)}7 is an o.n.b, for TxM and X(x)(e j )  = 0 for j > n. Then it is clear 
that X(Y*(v) )  = 0 for v E vx. So Eq. (32) is the same as our original stochastic 
differential equation (1), and thus 2t has the same distribution as xt and has 
no explosion. On the other hand, by formula (18): 

tas  K 
Elvs~lzsK<, = ]v01E e M,%K e , ZsK<,, 

= ,voIE (e(M,)ea~Aw 

by the optional stopping theorem. But by the Girsanov-Cameron-Martin for- 
mula ([10], [21]), 

tAS K I ~, J H,L~s)( V.~rS, v_%,ld s 
= Ee ~ ao .- ~ l v s l ' f v s l /  Z s K < t  �9 E e(Mt)e J Zff  <t 

< E e�89 J; f( ' fs)ds z K ] 

=E(e �89  < oo. 
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Thus lim.j__,oosupxex EJTxFt/,sjKIZsj~:<t < oo, and 

follows. �9 

the strong 
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9 Application to differentiation of semigroups 

Assume the derivative of  the solution flow of equation (1) has first moment: 
EITxF~)c,<r < oo. We may define a semigroup (formally) of  linear operators 
6Pt on bounded measurable 1-forms as follows: for v c TxM and q5 a 1-form 

(3Pt)~b(v) = E(a(TxFt(v))Zt<G~). (33) 

It is in fact an LP semigroup under suitable conditions on the derivative flow 
TFt. On the other hand, 3Pt(df)  is clearly the formal derivative of  Pt f ,  which 
can be checked to be true if the SDS concerned is strongly 1-complete and if 
TFt satisfy an integrability condition (see below). By virtue of  the introduction 
of strong 1-completeness we can improve a theorem of Elworthy [10]. The as- 
sumption that the SDS is strongly 1-complete is, on the other hand, a natural as- 
sumption: first d P t f  = (6Pt)(df)  for f E BC 1 implies completeness (take f = 
1), and in fact d P t f  = (3Pt)(df)  for f c C ~  and ElTxFtlz,<~(x) < cx) implies 

completeness [17]. Here BC 1 is the space of bounded functions with bounded 
continuous first derivatives. And also strong 1-completeness follows from com- 
pleteness if  for a complete Riemannian metric supx6KEsups<=t ]T~Fs] < (x) for 
all compact sets K (Theorem 3.1). For applications of  results in this section, 
see [17], and [12]. 

Theorem 9.1 Assume strong 1-completeness. Suppose the map r ---+ EI T,(r)Ft ] 
is continuous for r small, for all smooth curves a : [0, d] ~ M. I f  f is BC 1, 
then P t f  is C 1 and 

d(Pt f ) (x)  = 5Pt(d f ) ( x )  . 

Proof Let x E M, v E TxM. Take a geodesic curve a �9 [0, f] ---+ M starting from 
x with velocity v such that the image set is contained in a compact neighbour- 
hood K of x. By the strong 1-completeness, Ft(G(s)) is a.s. differentiable with 
respect to s. So for almostly all co: 

S f(Ft(a(s),  ~o)) -- f(Ft(x,  09)) 1 
= sfodf(T,,(r)Ft(6(r),(o))dr. s 

By the strong l-completeness we know To(r)Ft((r(r)) is continuous in r for 
almost all co. Thus: 

1 s s 

El im-  f d f ( T~(r)Fs( 6(r ), (9 ) )dr. = Elim 1 f d f ( T~(r)Ft( 6(r ), (o ) )dr 
s---*O S 0 s---+O S "0 

= Edf(TFt(v) ) .  
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1 S 
On the other hand, lims-~0 -i fo E[T~(~)Ftl dr = EITxF, I i f  the map r --~ glT~(r>F,I 
is continuous. But [d f(T~(r)Ft(b(r)))[ <= Id fl~lT~(r)Ftt,  so lims~oEIs = 
E lims~0 Is giving Edf (TxFt (v ) )  = d (P t f ) ( v ) .  �9 

Let a ( 0 ) =  x0, the required continuity of the map r l  ~ E]To(r)Ft[ can be as- 
sured by one of the following conditions: (1) There is a constant fi > 0 such 
that: 

supglTxFtl 1+~ < oc ,  
xCK 

for a compact neighbourhood K of x0. (2) Esupxex [TxFt[ < oc for a compact 
set K containing x0. 

Corollary 9.2 Let  M be a complete Riemannian manifold. Suppose S D S  (1) 
is complete and satisfies: 

Hl+~(v, v) <= klvt 2 . 

Then d P t f  = aPt(d f )  i f  both f and d f  are bounded. Here H is as defined 
in section 5. 

Proof  First the system is strongly 1-complete by the bounde&less o f / /1 .  On 
e(I+6) t 

the other hand, formula (18) in section 5 gives: EITxFt[ 1+~ < e 2 . 
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