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0.1 Prologue
These are the lecture notes for the CDT core module “Advanced Topics in Stochastic
Processes”. I will assume basic knowledge of stochastic calculus and the theory of mar-
tingales, and aim to study some more advanced topics in depth.

Stochastic processes are used to model the evolution of physical quantities which
have either intrinsic randomness or are subject to external random influences (e.g. from
a random environment). The properties one is usually interested in are then of course
dependent on the particular phenomenon to be modelled. We will take a more theoretical
point of view and study path properties, large time asymptotics, ergodic properties and
the connections with PDEs.

In these lectures, we will focus on continuous time and sample continuous stochastic
processes on a complete, separable (i.e. having a countable dense subset), metric state
space X . We can also work with Polish spaces (separable completely metrizable topolog-
ical spaces), for all practical purposes we can just as well endow it a metric. As usual,
B(X ) is the Borel σ-field on X . We also assume an underlying filtered probability space(
Ω,F , (Ft), P

)
with a complete and right-continuous filtration (Ft) (the ‘usual’ condi-

tions). A stochastic processes (Xt) is a random function X : R+ × Ω → X , assumed to
be adapted to the filtration unless stated otherwise.

List of Notations

. B(X ) denotes the Borel σ-algebra on a metric or topological space X .

. P(X ) denotes the set of Borel probability measures on a metric space X .
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. Bb(X ) is the space of bounded, measurable functions X → R equipped with the
sup-norm.

. BC(X ) is the space of bounded continuous functions from X to R.

. C(X ), the space of real continuous functions on X .

. C0(X ) is the space of continuous functions vanishing at infinity equipped with the
sup-norm (assuming X is locally compact). To be more precise f ∈ C0(X ) if, for
any ε > 0, there is a compact set K ⊂ X such that |f(x)| 6 ε for all x ∈ X \K.
This is a Banach space, provided X is locally compact. In fact, you can check that
in this case C0(X ) is the closure of Cc(X ), the space of continuous functions with
compact support.

Example 0.1.1.

(i) X = Rn or any finite dimensional, complete, connected, smooth Riemannian man-
ifolds with the relevant metrics. (To clarify, in the definition of manifolds, we
assume Hausdorff and second countability).

The state space in most examples of Markov processes encountered in these lectures
will be Rn, although it is sometimes useful to treat a sample path of a stochastic
process as a ‘point’ in the path space.

(ii) The space C([0, 1];R) with the supremum norm is a separable Banach space (the
set of polynomials with rational coefficients is dense).

In general C(X ) is separable if X is a compact metric space.

(iii) The canonical path space X = C(I,Y) for some complete separable metric space
Y and I = [0, T ] is a complete separable metric space with the supremum norm.
If I = R+, it will be equipped with the topology of (local) uniform convergence
which is metrized by

d(f, g) =
∞∑
n=1

1

2n
sup
t∈[0,n]

dY
(
f(t), g(t)

)
.

(iv) The spaceD
(
[0, 1],Y

)
of càdlàg (right-continuous with left limits) functions [0, 1]→

Y . Equipping this space with the uniform topology renders it inseparable, while
still being Banach. The remedy was found by Skorohod who introduced a sep-
arable metric, which however turned out to be non-complete. Shortly thereafter,
Kolmogorov found a complete metric which induces the same topology (remember
that completeness is not a topological property!). Kolmogorov’s metric is given by

d(f, g) = inf
α∈H

{
sup
t∈[0,1]

dY
(
f(t)− g ◦ α(t)

)
+ |id− α|∞

}
,

where H denotes the space of strictly increasing homeomorphisms on [0, 1]. Un-
der this topology, a sequence of functions converges if they converge in the supre-
mum topology after stretching and squashing. The associated topology is now often
called the J1-topology and is closest to the uniform topology (on C

(
[0, 1],Y

)
they

coincide). Since sometimes there is need for coarser topologies, other topologies
on D

(
[0, 1],Y

)
were introduced. The take home fact is that there exists a metric on

D rendering it Polish and inducing the Skorohod topology.
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(v) The space Bb([0, 1]), of bounded measurable functions on [0, 1], is not separable.
(The collection {1[0,a], a 6 1} is uncountable, and any two functions in it has dis-
tance 1.)

The space BC(R,R) with the supremum norm is not separable. (To see this, ob-
serve that the set of continuous functions taking either 0 or 1 at integers is uncount-
able, any two distinct functions from it has distance 1 from each other.)

(vi) Assume that X is in addition locally compact. Then C0(X ), the collection of real
valued functions on X vanishing at infinity, is separable. Let Kn be a collection of
compact sets with ∪nKn = X , this property is called countable at inifnity, and let
En be a countable dense set of continuous functions with compact support on Kn.
Then E = ∪nEn is a dense subset of C0(X ).

1

1This is based on the 2020-2021 lecture notes which was typed by Julian, I would like to thank him for
typing it up for for proof reading.
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Chapter 1

Introduction

1.1 Lecture 1
Let I be the index set and let

(
Ω,F , (Ft)t∈I ,P

)
be a filtered probability space. where Ft

is a filtration satisfying the usual completeness and right continuity assumptions. This is
also denoted by

(
Ω,F ,Ft,P

)
for short. Any random variable under discussion shall be

assumed to be a complete and separable metric space X , e.g. X is Rn or a Riemannian
manifold. In addition, we index a stochastic process by t ∈ I for some interval I ⊂ R
(usually I = [a, b] or I = R+).

Let σ(X) denote the σ-algebra generated by a random variable X with values in X .
Likewise let FXt denote the σ-algebra generated by the stochastic process (Xt, t ∈ I)
up to time t, this contains all information from the stochastic process up to time t. This
is the natural filtration for X·. If for almost surely all ω, t 7→ Xt(ω) is continuous, we
may consider (Xt, t ∈ I) as a random variable on the path space C(I,X ), the latter is a
metric space with the supremum norm in case I is a compact interval or metrized with the
distance function d(f, g) =

∑∞
n=1

1
2n

supt∈[0,n] dY
(
f(t), g(t)

)
, in case I = R+. ( In case

the sample paths have left limit and right continuous, the space of continuous functions is
replaced by D

(
[0, 1],Y

)
, the space of càdlàg (right-continuous with left limits) functions

[0, 1] → Y . As mentioned earlier, we shall focus on stochastic processes with sample
continuous paths.

1.1.1 Markov Processes

The probability distribution of a stochastic process (Xt, t ∈ I) is determined by its finite
dimensional distributions µt1,...,tn where µt1,...,tn(A1×· · ·×An) = P(Xt1 ∈ A1, . . . , Xtn ∈
An) for any Ai ∈ B(X ), and t1, . . . , tn ∈ I . In addition to the distribution of the pro-
cess at each time, we must also know their correlations. The simplest correlation is that
any finite collections of random variables {Xt1 , . . . , Xtn} are mutually independent. A
stochastic process is stationary if for any t ≥ 0, Xt+· and X· have the same finite dimen-
sional distributions. A simplest stochastic process is a stationary process such that for any
finite collections of times {ti}, {Xti} are uncorrelated and thus µt1,...,tn = ⊗nµ where
µ = L(Xt). The next simplest stochastic process is a Gaussian process, for its prob-
ability distribution is determined by the expectation E(Xt) and its correlation function
E(Xt−EXt)(Xs−EXs). The next simplest is perhaps the Markov property: it allows to
determine the finite dimensional distributions with one step transition probabilities.

A stochastic process is said to have the Markov property if its evolution from the
current time s depends only on the random variable Xs, given its present it does not
depend on the whole history.
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If Z : Ω → R is another random variable, then there exists a Borel measurable func-
tion f : X → R such that E(Z|σ(X)) = f(X), we denote the function f by E(Z|X = x).
If X is a stochastic process and G : Ω → R a FXt = σ(Xs, s 6 t) measurable function,
there exists F : C([0, t],X ) Borel measurable such that E(G|FXt ) = F ((Xs, s 6 t)).

Definition 1.1.1. An Ft adapted, X -valued, stochastic process X is said to have the
Markov property if for all f ∈ Bb(X ) and all s 6 t, s, t ∈ I ,

E [f(Xt) | Fs] = E [f(Xt) |Xs] , a.e.. (1.1.1)

In particular, the finite dimensional distributions of a Markov processes are determined
by the two time point evolutions and are given by (exercise):

P (Xtn ∈ An, . . . , Xt1 ∈ A1) = P (Xtn ∈ An |Xtn−1 ∈ An−1) · · ·P (Xt1 ∈ A1). (1.1.2)

In Definition 1.4.1, the Markov process is relative to the background filtration (Ft).
We have allowed to take a filtration finer than FXt to accommodate for other random
elements in the system.

Remark 1.1.2. If (Xt) is a Markov process, it is clearly a Markov process with respect to
its natural filtration(FXt ).

Fix s, t > 0 and A ∈ B(X ). Then there is a ψ ∈ Bb(X ) such that

P(Xt+s ∈ A |Xs) = ψ(Xs) a.s.

The null set depends on the data in general. In practice, however, we can often choose ψ
in a nice way.

1.1.2 Transition Functions
As we have seen in (1.1.2), the evolution of a Markov process is completely determined
by its one step conditional probabilities. By Definition 1.4.1, for any f ∈ Bb(X ), any
s < t, we have a function Ps,tf such that the right hand side of 1.1.1 equals to Ps,tf(Xs)
almost surely. We shall need to assume measurability conditions in s, t and x, which we
usually easy to obtain for separable complete metric spaces, and use the regular versions
of these, the ‘transition probabilities’. Roughly speaking, these represent the probability
of finding Xt+s in a neighbourghood of a point y knowing that Xs = x.

To avoid handling measurability issues, we introduce transition functions.

Definition 1.1.3. A real valued mapping P : R+×X×B(X )→ [0, 1] is time-homogeneous
transition function if

(i) Pt(x, ·) ∈ P(X ) for all (t, x) ∈ R+ ×X .

(ii) P0(x, ·) = δx for all x ∈ X .

(iii) for any A ∈ B(X ), (t, x) 7→ Pt(x,A) is measurable.

(iv) for any t, s > 0, x ∈ X , and A ∈ B(X ), the Chapman-Kolmogorov equation

Pt+s(x,A) =

∫
X
Pt(y, A)Ps(x, dy). (1.1.3)

holds.

It is standard to only requires x 7→ Pt(x,A) measurable for any t > 0. But the joint
measurability is often easily obtainable.
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Remark 1.1.4. Equation (1.1.3) implies that, for all 0 6 s 6 t 6 u and f ∈ Bb(X ), the
Chapman-Kolmogorov equation∫

Rd
f(y)Pt+s(x, dy) =

∫
Rd

∫
Rd
f(y)Pt(z, dy)Ps(x, dz) (1.1.4)

holds.

Definition 1.1.5. An adapted process (Xt)t>0 is a (time homogeneous) Markov process
with transition function P if, for any 0 6 s 6 t and any A ∈ B(X ),

P (Xt ∈ A | Fs) = Pt−s(Xs, A) a.s. (1.1.5)

Note that if (Xt) is a stochastic process satisfying (1.1.5), then it is necessarily a
Markov process. In particular,

P(Xt ∈ A|F0) = P(Xt ∈ A|X0) = Pt(X0, A), P(Xt ∈ A|X0 = x) = Pt(x,A) a.e..

Consequently, for any f ∈ Bb(X ),

E(f(Xt)|X0 = x) =

∫
X
f(y)Pt(x, dy).

If X0 is distributed as µ0 we see (by taking expectation of the above),

P(Xt ∈ A) = E(E(f(Xt)|X0)) =

∫
X
Pt(y, A)µ0(dy). (1.1.6)

By the Chapman-Kolmogorov equation one can show (exercise):

Theorem 1.1.6. Let (Xt)t>0 be a Markov process with transition function P and initial
distribution X0 ∼ µ0. Then, for any A0, . . . , An ∈ B(X ) and 0 = t0 < t1 < · · · < tn,

P(Xt0 ∈ A0, . . . , Xtn ∈ An) =

∫
A0

· · ·
∫
An

Ptn−tn−1(yn−1, dyn) · · ·Pt1(y0, dy1)µ0(dy0).

(1.1.7)

Remark 1.1.7. A Markov process with a transition function can start from any point,
P (Xt ∈ A |X0 = x) = Pt−s(x,A), and so we have a family of stochastic processes
satisfying the Markov property.

From now on all Markov processes are Markov processes with transition functions
unless otherwise stated.

1.2 Markov Semi-groups
Definition 1.2.1. For any t > 0, we define a linear map Tt : Bb(X )→ Bb(X ),

Ttf(x) ,
∫
X
f(y)Pt(x, dy).

If Xt is a Markov process with transition function Pt, then

Ttf(x) = E[f(Xt+s) |Xs = x].
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Note that T0 is the identical transformation and the Chapman-Kolmogorov equation
leads to

Tt+sf(x) =

∫
X
f(z)Pt+s(x, dz) =

∫
X

∫
X
f(z)Ps(y, dz)Pt(x, dy)

=

∫
X
Tsf(y)Pt(x, dy) = Tt(Tsf)(x).

Thus Tt is a semigroup of linear operators on E = Bb(X ): T0 = id, and

Tt ◦ Ts = Tt+s. (1.2.1)

In addition, Ttf ≥ 0 if f ≥ 0, Tt1(x) = 1, and ‖Ttf‖E 6 ‖f‖E .

Remark 1.2.2. The property (1.2.1) encapsulates the key analytical property of Markov
processes since (Tt) consequently defines a ‘semigroup’ of linear operators on Bb(X ).
We can now pull our most favorite functional analysis book off the shelf and have a look
what results of the analysts we can hijack for our analysis. The first resignation comes
as we realize that some regularity of the mapping t 7→ Tt is required for a rich theory.
Moreover, we expect some more specialized results since (Tt) has additional structure,
e.g. Tt1 = 1 and Ttf > 0 for f > 0. We also need some continuity of the operator Tt.

We will study these in more detail, but before that let us have a look into some exam-
ples of Markov processes.

1.3 Brownian Motion and diffusion processes
A stochastic process (Xt) is said to have independent increments, if for any t1 < t2 <
· · · < tn, (Xtn −Xtn−1 , . . . , Xt2 −Xt1) are independent random variables.

Exercise 1.3.1. If a stochastic process has independent increments, it is a Markov process.

If Bt is a 3-dimensional Brownian motion, then

P(Bt ∈ A|B0 = x) =

∫
Rd

1

((2π)t)3/2
e−
|y−x|2

2t dy.

A Brownian motion is the archetypal Markov process, first used to model the motion
of a macroscopic particle (e.g. pollen) in a liquid at rest is the result of its collisions
with the microscopic water molecules which undergo a thermodynamic movement. The
probability of finding the Brownian particle in a set A at time t > 0 is thought to be

P(Bt+s ∈ A |Bs) =

∫
A

pt(Bs, y) dy

wherep : (0,∞)× Rd × Rd → R+ denote the heat kernel

pt(x, y) , (2πt)−
d
2 e−

|x−y|2
2t ,

the fundamental solution to the heat equation

∂

∂t
u =

1

2
4. (1.3.1)

We set Pt(x,A) ,
∫
A
pt(x, y) dy, the family of measures {Pt(x, ·)}x∈Rd is a transition

function.
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The equation (1.3.1) and its generalizations, which we discuss later, are called diffu-
sion equations where the Laplacian ∆ is replaced by a diffusion operator:

L =
1

2

d∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
+

d∑
k=1

bk(x)
∂

∂xk
.

The name diffusion stems from a molecular diffusion model in which a large number of
particles move according to Fick’s law. We can use a random walk model for the discrete
version. Let ∆x denote the spatial step and ∆t the time step, so we have sj = j∆x and
tn = t0 + n∆t. Denote by cnj the number of particles at site sj at time tn. Suppose that a
molecule moves to its left with probability p = 1

2
, to its right with q = 1

2
, then

cn+1
j − cnj =

1

2
cnj+1 +

1

2
cnj−1 − cnj .

Let ∆cnj = cn+1
j − cnj . Then

∆cnj
∆t

=
1

2

(∆x)2

∆t

(
cnj+1 + cnj−1 − 2cnj

)
(∆x)2

.

If we keep the ratio D , (∆x)2

∆t
constant, this discrete equation is a finite difference

approximation for the equation
∂

∂t
c =

1

2
D4C.

A Brownian motion on Rn is a Gaussian process and a Markov process. From the
definition one sees that

E(f(Bt)|Bs = x) =
1

(2π)n/2

∫
Rn
f(y + x)e−

|y|2
2(t−s)dy.

Note that if f is bounded measurable, the function on the right hand side is continuous in
s, t and in x. This smoothing property is typical os elliptic diffusions. You are asked to
give a proof of the following theorem on Example sheet 1.

Theorem 1.3.2. Let f ∈ BC(Rd), then

u(t, x) =

∫
Rd
f(y)pt(x, y) dy

solves the heat equation (1.3.1) and limt↘0 u(t, x) = f(x) for each x ∈ Rd.

A formal definition:

Definition 1.3.3. An n-dimensional Brownian motion Bt is a sample continuous sample
path, with independent stationary increments, and Bt − Bs ∼ N(0, (t − s)I) for any
0 6 s < t.

Example 1.3.4. An example of a Markov process is the stationary Ornstein-Uhlenbeck
process which solves the linear equation:

ẋt = vt, dvt = −vtdt+ dBt.

Here (vt) is a Markov process on R, (xt, vt) is a Markov process on R2, but (xt) alone is
not a Markov process.
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Exercise 1.3.5. Compute their transition functions, show (xt) is not a Markov process.

You may want to check conditions on a Gaussian process to be a Markov process.
Remark 1.3.6. A standard Brownian motion on Rn has many desirable properties:

(i) It is a Markov process.

(ii) It is a martingale.

(iii) It is a Gaussian process.

(iv) It has stationary increments.

(v) It has independent increments.

(vi) Its probability distribution at any time t > 0 has exponential tails.

(vii) It is an elliptic diffusion.

(viii) Its semigroup has the strong Feller property.

(ix) Almost all of its sample paths are continuous (they are in fact in C 1
2
−).

The concepts of a Brownian motion can be defined on a Riemannian manifold: It is a
strong Markov process with generator 1

2
∆.

Example 1.3.7. Not every Gaussian process is a Markov process. Fractional Brownian
motion with Hurst parameter H ∈ (0, 1) \ {1

2
} is a centred non-Markovian Gaussian

process with covariance:

E(BtBs) =
1

2
(t2H + S2H − |t− s|2H).

Example 1.3.8. If Wt is a Brownian motion from 0, x+Wt is a Markov process with the
heat transition function Pt(x, dy) = 1√

2π
e−|y−x|

2/2tdy and initial value x. It starts from x,
after time s, it restarts from x+Bs.

1.4 Strong Markov Process
Definition 1.4.1. An adapted, X -valued stochastic process X is a strong Markov process
if for all f ∈ Bb(X ) and and for any stopping time τ and any t ≥ 0,

E [f(Xτ+t) | Fτ ] = E [f(Xτ+t) |Xτ ]

on the event {τ <∞} where Fτ = {A ∈ F∞ : A ∩ {τ 6 t} ∈ Ft,∀t}.

Example 1.4.2. Let

Xt ,

{
x+Wt, if X0 = x 6= 0,

0, if X0 = 0,

for a one-dimensional Brownian motion (Wt)t>0. This is a Markov process with transition
function

Qt(x, dy) =

{
Pt(x, dy), if x 6= 0,

δ0(dy), if x = 0,

where Pt(x, dy) = pt(x, y)dy where pt(x, y) is the heat kernel and dy the Lebesgue
measure on R. It is clear that

E [f(Xt+s) |Xs] =

{
Ttf(Xs), if Xs 6= 0,

f(0), if Xs = 0,
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where Ttf(x) ,
∫
R f(y)Pt(x, dy) is the heat semigroup. Note that the Chapman-Kolmogorov

equation

Qt+s(x,A) =

∫
X
Qt(y, A)Qs(x, dy)

holds. Indeed, Pt+s(x,A) =
∫
X Pt(y, A)Ps(x, dy). If x 6= 0, since Qt(y, A) and Pt(y, A)

only differ at y = 0 and the Lebesgue measure does not charge singleton sets, this does
not change the integral. Also Qt(0, A) = δ0(A) for each t > 0 and so∫

R
Qt(y, A)Qs(0, dy) =

∫
R
Qt(y, A)δ0(dy) = δ0(A) = Qt+s(0, A).

The process X is however not strong Markov. Indeed, let τ , inf{t > 0 : Xt = 0}.
Then, by strong Markov, it would restart at time τ from 0 = Xτ and we would have
Xt+τ = 0 for all t > 0. Our Markov process Xt starting away from zero goes straight
through 0 like a Brownian motion.

Definition 1.4.3. We say Tt has the Feller property if Ttf is continuous whenever f is
bounded continuous; it is said to have the strong Feller property if Ttf is continuous
whenever f is bounded measurable.

Exercise 1.4.4. Check whether Tt defined in the example above has the Feller property.

1.5 Gaussian processes with the Markov Property
For any a ∈ Rn and any n × n symmetric positive definite matrix C, there is a unique
probability measure with the following Fourier transform:∫

Rn
ei〈ξ,x〉µ(dx) = ei〈ξ,a〉−

1
2
〈Xξ,ξ〉, ξ ∈ Rn,

it is called the Gaussian measure with mean a and covariance C. If C is non-degenerate,
the Gaussian measure is of the form

1√
(2π)n detC

e−
1
2
〈x−a,C−1(x−a)〉dx.

Let Xt be a Gaussian process with mean µt = E(Xt) correlation function (auto-
correlation function):

R(s, t) = E〈Xt − EXt, Xs − EXs〉.

For the one dimensional Brownian motion this is s∧ t, for the one dimensional fractional
Brownian motion of parameter H this is

R(s, t) =
1

2
(t2H + s2H − |t− s|2H).

Exercise 1.5.1. Show that for H ∈ (0, 1) \ {1
2
}, a fractional Brownian motion is not a

Markov process.

It is easy to verify whether a Gaussian process is a Markov process, for the conditional
expectation of Xt on Xs is a linear function.

13



Proposition 1.5.2. If a centred Gaussian process on Rn with covariance R(t, s) is a
Markov process, then for any s < t < u,

R(s, u) =
R(s, t)R(t, u)

R(t, t)
. (1.5.1)

Conversely if the covariance of a Gaussian process satisfies the above identity for any
s 6 t 6 u, it is a Markov process. We have assumed implicitly the variances do not
vanish at any t.

Proof. We first claim that for s < t,

E(Xt | Xs) =
R(s, t)

R(s, s)
Xs, a.e. (1.5.2)

Indeed, the identity holds precisely when Xt − R(s,t)
R(s,s)

Xs and Xs are uncorrelated and
therefore independent, so

E(Xt|Xs) = E
(
Xt −

R(s, t)

R(s, s)
Xs | Xs

)
+ E

(R(s, t)

R(s, s)
Xs | Xs

)
=
R(s, t)

R(s, s)
Xs.

Suppose that Xt is a Markov process, then for s < t < u,

R(s, u)

R(s, s)
Xs = E(Xu | Xs)

= E
(
E(Xu|Ft)|Xs

)
= E

( R(t, u)

R(t, t)
Xt | Xs

)
=
R(t, u)

R(t, t)

R(s, t)

R(s, s)
Xs, a.e.,

concluding the require covariance identity. Conversely suppose the identities Equation (1.5.1)
hold, then for any t < u, Xu − R(t,u)

R(t,t)
Xt is not only independent of Xt, it is also indepen-

dent of Xs for any s 6 t, as

E
((
X i
u −

R(t, u)

R(t, t)
X i
t

)
Xj
s

)
= Ri,j(s, u)− Ri,j(t, u)

Ri,j(t, t)
Ri,j(s, t) = 0,

consequently Xu − R(t,u)
R(t,t)

Xt is independent of σ(Xs, s 6 t) and

E(f(Xu) | Ft) = E
(
f
(
Xu −

R(t, u)

R(t, t)
Xt +

R(t, u)

R(t, t)
Xt

)
| Ft
)

=

∫
f
(
z +

R(t, u)

R(t, t)
Xt

)
ν(dz),

where ν is the distribution of the Gaussian random variable Xu − R(t,u)
R(t,t)

Xt, since the
right hand side is a function of Xt this proves the Markov property. Observe also that its
transition semi-group is then

Pu−tf(x) =

∫
f
(
z +

R(t, u)

R(t, t)
x
)
ν(dz).

Note that ν is Gaussian with covariance R(t, u)− R2(t,u)
R(t,t)

.

14



Exercise 1.5.3. Prove this when the Gaussian process is not centred. Show that the frac-
tional Brownian motion does not satisfy Equation (1.5.1).

At this point we would explore an interesting property of a Markov process and from
which to construct a Gaussian process indexed by the state space of the Markov process.

Definition 1.5.4. A real valued stochastic process (Xt, t ∈ E) where E is a general index
set, is a Gaussian process if for any mult-indices t1, . . . , tn from E, the random variable
(Xt1 , . . . , Xtn) has Gaussian distribution. For any x, y ∈ E, we set

ρ(x, y) = cov(Xx, Xy).

Example 1.5.5. A Gaussian white noise on X is a family of centred Gaussian random
variables {W (t, A) : t ≥ 0, A ∈ B(X )} with the covariance

E(W (t, A)W (s, A′) = (s ∧ t)µ(A ∩ A′)

for µ a finite Borel measure on X . This allows to define for any f : X → R in L2(X , µ)
the Gaussian random variable W (f, A) by setting W (

∑n
i=1 ai1Ai , t) =

∑n
i=1 W (Ai, t),

so {W (f, t) : f ∈ L2(X , µ)} is a Gaussian family of random variables with:

E(W (f, t)W (f, s)) = (s ∧ t)
∫
fgdµ.

Let Pt(x, dy) be a transition function on a space X with the property they have den-
sities with respect to one, and the same one, σ-finite measure µ. We denote by p(t, x, y)
the densities so

Pt(x, dy) = p(t, x, y)µ(dy).

Set
ρ(x, y) =

∫ ∞
0

p(t, x, y)dt.

Proposition 1.5.6. Suppose that ρ(x, y) < ∞ for all x, y ∈ X , it is the covariance of a
Gaussian process.

Proof. By the proposition below, it is sufficient to show ρ is of positive type. Let ξ =
(ξ1, . . . , xn) ∈ Rn, x ∈ X , then

n∑
i,j=1

ρ(xi, xj)ξiξj =
n∑

i,j=1

∫ ∞
0

p(t, xi, xj)dt ξiξj

=
n∑

i,j=1

∫ ∞
0

∫
X
p(t/2, xi, z)p(t/2, xj, z)µ(dz)dtξiξj

=

∫ ∞
0

∫
X

( n∑
i=1

p(t/2, xi, z)ξi
)2
µ(dz)dt ≥ 0,

completing the proof.

The condition ρ(x, y) =
∫∞

0
p(t, x, y)dt < ∞ is related to the transient property of

the process, it is more likely to be finite, if the process does not spent much time there,
For a Brownian motion on Rn,

g(x, y) =

∫ ∞
0

p(t, x, y)dy =
1

2

1√
πn
|x− y|2−nΓ(

n

2
− 1)
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where p(t, x, y) is the heat kernel, is the Green kernel, g(x, x) =∞.
Formally, we interpret

∫∞
0
Ptdt as (−1

2
∆)−1: if −1

2
∆ to the integral which itself ap-

plied to a suitable function f : −1
2
∆
∫∞

0
Ptfdt = −

∫∞
0

∂
∂t
Ptfdt = f − ‘P∞f

′. This can
be made rigorous when applied to the Laplacian on a compact manifold then there exists
a unique invariant probability measure π and we expect that L(Xt) converges to π and for
any f with

∫
fdπ = 0 we expect that limt→∞ Ptf =

∫
fµ(dy) = 0.

Proposition 1.5.7. A function ρ : E × E → R is the covariance of a Gaussian process
if and only if ρ is positive type, i.e. for any y1, . . . , yn ∈ E, the matrix (ρ(yi, yj)) is a
non-negative / positive definite matrix.

The necessity part of the proposition is trivial, the converse follows from Kolmogorov’s
extension theorem.

1.6 Invariant Measure and Stationary Markov Processes
Given a measure µ on X , we define for any A ∈ B(X ),

T ∗t µ(A) =

∫
X
Pt(x,A)µ(dx),

this defines a transformation on measures on X :

µ 7→ T ∗t µ(·) =

∫
X
Pt(x, ·)µ(dx).

Then for any f ∈ Bb(X ),∫
X
f(y)(T ∗t µ)(dy) =

∫
X

∫
X
f(z)Pt(x, dz)µ(dy) =

∫
X
Ttf(y)µ(dy).

Definition 1.6.1. A measure µ is an invariant measure for a transition function Pt(x, dy)
(for the Markov process with the transition probability ) if T ∗t µ = µ for any t, i.e.∫

X
Ttf(y)µ(dy) =

∫
X
f(y)µ(dy)

for any f ∈ Bb(X ).

If µ is furthermore a probability measure and if X0 with distribution µ, then T ∗t µ is
the probability distribution of Xt, c.f. Equation (1.1.6), so the probability distribution of
Xt does not change with time.

Naturally, an invariant probability measure of Tt is also called an invariant probability
measure of the Markov process.

1.7 Exercises
Coming back to the Ornstein-Uhlenbeck process on R, the solution to

dvt = −βvtdr + αdBt

is a Gaussian process, where β, α are real numbers. The solution can be explicitly written:

vt = e−βtv0 + α

∫ t

0

e−β(t−s)dBs.
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Exercise 1.7.1. Show that the distribution of∫ 0

−∞
e−t+sdBs

is an invariant probability measure for the solution of

dvt = vtdr + dBt

Exercise 1.7.2. Show that the solution vβt to

dvβt = −βvβt dr +
√
βdBt

has the same distribution as vt/β where vt solves

dvt = −vβt dt+
√
βtdBt.

Exercise 1.7.3. Show that the solution xβ· of the system of equations,

ẋβt = vβt , dvβt = −βvβt dr + βdBt,

converges weakly to that of a Brownian motion as β → ∞. Compute the covariance
E(vβs v

β
t ).

1.8 The Canonical Picture
Given a transition function P and a probability measure µ, does there exist a Markov
process with t.f. P and initial distribution µ? To answer this question we work with the
canonical space.

Let X I = {ω : I → X} denote the collection of mappings from I to X with the
product Borel σ-algebra

⊗
t∈I B(X ) = σ(πt, t ∈ I). A stochastic process (Xt, t ∈ I) is

a random variable with values in X I and induces a measure µX = L(X·) on X I . This
measure encodes all statistical information of the process.

Let us change the point of view, take Ω , X I = {ω : I → X} to be our measur-
able space , this is the canonical space. We endowed with the measure induced by the
stochastic process for X·.

Let πt : X I → X ,
πt(ω) = ω(t)

be the canonical evaluation map at time t ∈ I and let Ft be its natural σ-algebra.

Remark 1.8.1. If {Xn} is a family of separable metric spaces, the Borel σ-algebra of
Π∞n=1Xn agrees with the product σ-algebras ⊗∞n=1B(Xn). Note that B(X )⊗I ⊂ B(X I),
the latter is the Borel σ-field on X I equipped with the product topology, and the inclusion
is strict. Indeed, it is clear that singletons are closed in the product topology but a set
A ∈ B(X )⊗I can only depend on countably many times.

Recall that if (Xt)t>0 is a Markov process with transition function P and initial distri-
butionX0 ∼ µ, then for anyA ∈ B(X ), P(Xt ∈ A) = E [Pt(X0, A)] =

∫
X Pt(y, A)µ(dy).

and by Theorem 1.1.6, for any A0, . . . , An ∈ B(X ) and 0 = t0 < t1 < · · · < tn,

P(Xt0 ∈ A0, . . . , Xtn ∈ An) =

∫
A0

· · ·
∫
An

Ptn−tn−1(yn−1, dyn) · · ·Pt1(y0, dy1)µ(dy0).

(1.8.1)
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This inspires the following definition. Given Pt, µ, and ∆ = {t1 < · · · < tn} ⊂ I a
finite collection of times, we define a measure µ∆ on X n+1 by

µ∆(A0 × · · · × An) ,
∫
A0

· · ·
∫
An

Ptn−tn−1(yn−1, dyn) · · ·Pt1(y0, dy1)µ(dy0). (1.8.2)

This collection of finite-dimensional distributions is consistent in the sense that, ifAk = X ,

µ∆(A0 × · · · × An) = µ∆\{tk}(A0 × · · ·Ak−1 × Ak+1 × · · · × An).

We leave it to the reader to check the consistency. Kolmogorov’s extension theorem then
establishes the following result:

Theorem 1.8.2 (Canonical picture). Let P be a transition function and µ ∈ P(X ). Then
there exists a unique measure Pµ on X I such that, for any finite set of times ∆ ⊂ I ,
∆ = {t1, . . . , tn},

π∗∆Pµ = µ∆,

where π∆(ω) =
(
ω(t)

)
t∈∆

= (ω(t1), . . . , ω(tn)). Consequently, the coordinate map πt
is a Markov process on

(
X R+ ,

⊗
t∈I B(X ),Pµ

)
with transition function P and initial

distribution µ.

Equation (1.8.2) precisely means that the finite dimensional distributions of πt are
π∗∆Pµ, it is therefore a Markov process.

Definition 1.8.3. If µ = δx in Theorem 1.8.2, we denote Px = Pδx .

Recall that in the definition of a transition function we required that (t, x) 7→ Pt(x,A)
is measurable for each A ∈ B(X ). Hence,

x 7→ Px(πt1 ∈ A1, . . . , πtn ∈ An) =

∫
A1

· · ·
∫
An

Ptn−tn−1(yn−1, dyn) · · ·Pt1(x, dy1)

is measurable and, by an easy monotone class argument, the same holds for x 7→ Px(A)
for a general A ∈

⊗
t∈I B(X ). We can hence integrate Px(A) and In particular π∗∆Pµ =∫

π∗∆Pxµ(dx), we have

Pµ(A) =

∫
X
Px(A)µ(dx).

Remark 1.8.4. The collection of probability measures Px are Markovian measures (on the
path space). If the Markov process is furthermore strong Markov with sample continuous
sample paths, they are called diffusion measures.

Let us now examine how the Markov property looks in the canonical picture, taking
I = R+. To this end, let θs : X R+ → X R+ , θsω(t) = ω(s + t) be the shift operator. If
Φ : X R+ → R is a Borel measurable function, we introduce the notation:

Eµ[Φ] =

∫
XR+

Φ(σ) dPµ(σ), Ex[Φ] =

∫
XR+

Φ(σ) dPx(σ),

Using the canonical process X , on the probability space (X R+ ,Bb(X R+),Px), we have
another notation: Ex[Φ] = Ex[Φ(X)].

Theorem 1.8.5. Let (Xt)t>0 denote the canonical Markov process with transition function
P . Then, for any Φ ∈ Bb(X R+),

Ex
[
Φ(θsX) | Fs

]
= EXs [Φ(X)] Px − a.s. (1.8.3)

for each x ∈ X .

18



This can be written as

Ex
[
Φ ◦ θs | Fs

]
= EXs [Φ] Px − a.s.

Proof. It is enough to prove this for

Φ(ω) = 1{ω:ω(t1)∈A1,...,ω(tn)∈An}.

Then (1.8.3) becomes

Px(Xt1+s ∈ A1, . . . , Xtn+s ∈ An | Fs) = PXs(Xt1 ∈ A1, . . . , Xtn ∈ An).

By Lemma 1.8.6

Px(Xt1+s ∈ A1, . . . , Xtn+s ∈ An | Ft1+s)

=

∫
X
· · ·
∫
An

Ptn−tn−1(yn−1, dyn) · · ·Pt1(y0, dy1)µ(dy0)

=

∫
A1

· · ·
∫
An

Ptn−tn−1(yn−1, dyn) · · ·Pt1(Xs, dy1),

where the second line follows from (1.8.1) with µ = δXs , proving the required identity.

Lemma 1.8.6. Let (Xt) be a Markov process with transition function Pt(x,A), t1 6 . . . 6
tn, and f1, . . . , fn from Bb(X ), then

E(Πn
i=1fi(Xti+s | Fs) =

∫
X
. . .

∫
X

Πn
i=1fi(zi)Ptn−tn−1(zn−1, dzn) . . . Pt1(Xs, dz1).

Proof. The proof for this is routine, it is sufficient to prove it for fi the indicator functions.
We show this for n = 2,

P(Xt1+s ∈ A1, Xt2+s ∈ A2 | Fs) = E
(
P(Xt2+s ∈ A2 | Ft1+s) | 1Xt1+s∈A1 | Fs

)
= E

(
Pt2−t1(Xt1+s, A2) | 1Xt1+s∈A1 | Fs

)
=

∫
A1

Pt2−t1(z, A2)Pt1(Xs, dz).

For n ≥ 2, the analogous conclusion follows from induction.

We stress that the expectations in (1.8.3) have to be understood as integrals on the path
space. To be utterly precise, (1.8.3) requires that∫

A

Φ ◦ θ·+s(ω)Px(dω) =

∫
A

∫
XR+

Φ(ω′)PXs(ω)(dω
′)Px(dω)

for all A ∈ Fs = σ(πr, r 6 s).

Remark 1.8.7. If (Yt)t>0 has càdlàg or continuous sample paths, we can use similar argu-
ments as above to construct a measure on D(R+,X ) and C(R+,X ), respectively. Since
these spaces are however not in B(X )⊗R+ , this is not a simple corollary of our results and
one has to work with the trace σ-fields instead.
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1.9 A Markovian framework for fBm
Let us show how to enlarge the state space to render a fractional Brownian motion (fBm)
Markovian. This is based on famous work of Hairer [Hai05].

We build a Markov process on the product Rd ×HH whose first marginal is an fBm.
The space HH is defined by the closure of

C∞0
(
R−,Rd

)
= {w : (−∞, 0]→ Rd : w(0) = 0, w is smooth and has compact support}

in the norm

‖w‖H = sup
s 6=t
s,t60

|w(t)− w(s)|
|t− s| 1−H2

√
1 + |s|+ |t|

.

You are asked to show that HH is indeed a separable Banach space on example sheet 1.
Note that we fix the value of the path in HH to be zero, so this norm is really a norm, not
a semi-norm.

Then we define a transition function Pt(w, ·) on HH as follows: Take a Wiener path
w̃ on [0, t] and concatenate with the deterministic path w and shift it down such that the
resulting function starts from the origin (see figure below). We call this operation θ̂t.

0 t

w̃

w

θ̂t

0−t

w

w̃

Recall that fBm, centred to be 0 at 0, has the representation

Bt = αH

∫ 0

−∞
(−r)H−

1
2 (dWt+r − dWr) (1.9.1)

where αH is a constant which we take to be 1 here. Conditioning on (Bs, s 6 0) is the
same as conditioning on (Ws, s 6 0). The resulting evolution now involves a piece of
Wiener process (Ws)s∈[0,t] independent of the history. Hence in more formal terms, the
transition function is given by

Pt(w, ·) = θ̂∗t
(
δw ⊗ L

(
(Ws)s∈[0,t]

))
.

We are almost done with our construction; we just have to transform the Wiener to an
fBm path. For this we make use of the representation (1.9.1). Define DH : HH → H1−H ,

DH(w)(t) =

∫ t

−∞
(−r)H−

1
2

(
ẇ(r + t)− ẇ(r)

)
dr

initially for w ∈ C∞0
(
R−,Rd

)
and extended to HH . One checks that DH is bounded and

invertible, see [Hai05, Lemma 3.6]. We also want to know that the sample paths of a
two sided Wiener processes belongs to HH with probability 1, which follows from the
following technical lemma:
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Lemma 1.9.1 ([Hai05, Lemma 3.8]). There exists a Gaussian measure W on HH such
that the coordinate process is a time-reversed Brownian motion.

Now we just need to shift the path with Rt : H1−H → C([0, t],Rd), Rt(w)(s) =
w(s− t)− w(−t). In summary set

Qt(x,w;A×B) ,
∫
B

δ
x+Rt

(
DH(w′)

)(A)Pt(w, dw
′).

This defines a so-called Feller transition function, which we study in greater detail below.
Moreover, the first marginal of the induced Markov process is the fBm we were after; the
second marginal is the whole history of the backwards Wiener process.

1.10 Remarks

1.10.1 Treating Markov Processes with finite life time
A prominent class of Markov processes are solutions of stochastic differential equations of
Markovian type. They may explode and have finite life time. Our setup excludes a Markov
process with finite lifetime, to get around the problem we either ditch the requirement that
Pt(x,X ) = 1 ( it is customary to emphasize the condition Pt(x,X ) = 1 by referring to
P as conservative Markov transition functions.) or enlarge the state space by adjoint an
extra absorbing state ∆ and define d(x,∆) = 1 for any x ∈ X . Then X̂ = X ∪ {∆}
is again a complete separable metric space. More precisely, if a stochastic process does
explode (has a finite lifetime), we We define Xt = ∆ for t greater or equal to its life time

τ , inf{t > 0 : Xt = ∆}.

The Borel σ algebra on X̂ is that generated by {∆} and B(X ). If Pt is a family of transi-
tion measures with Pt(x,X ) 6 1, we may define P̂t on X̂ such that P̂t(x,A) = Pt(x,A)
for x ∈ X and A ∈ B(X ), P̂t(x, {∆}) = 1− Pt(x,X ) for x 6= ∆ and P̂t(∆, {∆})) = 1.
The canonical space contains paths ω : [0, τ(ω) → X where τ(ω) is a positive number
such that ω(t) = ∆ for any t ≥ τ(ω).

1.10.2 Non-time-homogeneous Markov processes
We could also define a non-time-homogeneous transition function {Ps,t(x, dy), 0 6 s 6
t, x ∈ X}, analogous to Definition 1.1.3. Then Xt is a Markov process with the transition
function Ps,t(x, dy) if P (Xt ∈ A | Fs) = Ps,t(Xs, A). The following self-evident claim
shows that we can resort to this case in the sequel.

Exercise 1.10.1. Let X be a Markov process on X with transition function Ps,t. We
define a family of probabilities on R+ × X as below. Letting z = (s, x) ∈ R+ × X and
dz̄ , d(s̄, x̄),

P̂h(z, dz̄) = δh+s(s̄)Ps,s+h(x, dx̄).

Show that P̂h is indeed a time-homogeneous transition function and X̂t , (Yt, Xt), where
Yt = Y0 + t, is a time-homogeneous Markov process with transition function P̂h.

We will focus on time homogeneous Markov processes and drop the prefix ‘time-
homogeneous’ henceforth.
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Chapter 2

Semi-groups, Generators, and
Martingale Problems

Instead of specifying the transition probabilities, which is impossible most of the times,
we specify the probability semigroup associated to it. To this end, we need a considerable
amount of semigroup theory, which we recall in its general form in Section 2.1.2, and
develop for so-called Markov semigroups in this chapter.

2.1 Preliminaries and Terminologies
Please familiarise yourself with material in this section ahead of the lecture.

2.1.1 Linear Operators
The set of all linear operators between two normed spaceE and F is denoted by L(E,F ),
on which we define the operator norm:

‖T‖ , sup
|x|E=1

|Tx|F = {|Tx|F : |x|E 6 1} <∞.

An operator T is bounded if its operator norm is bounded.
Example 2.1.1. If E is finite dimensional space, then every linear map from E → F is
bounded. Indeed, let ei be an o.n.b. basis of E, then if x =

∑
xiei,

|Tx| 6 max |xi|
n∑
i=1

|Tei|.

Since maxi |xi| defines a norm on E and all norms on E are equivalent, then exists a
constant C such that max |xi| 6 C|x| for all x ∈ E, and ‖T‖ 6 C

∑n
i=1 |Tei|.

Proposition 2.1.2. The following are equivalent:

(i) T is bounded,

(ii) T is continuous,

(iii) T is continuous at 0.

If T1 : D1 → F and T2 : D2 → F , where D1 ⊂ D2 and T1 = T2 on D1, then T2 is
an extension of T2 and T1 is the restriction of T2 on D1. Let E,F be Banach spaces. By
a ‘linear operator with domain D ⊂ E’, we mean T is defined only on D.
Example 2.1.3. Let T : C1([0, 2π]) → C([0, 2π]) be the derivative operator Tf = f ′.
Then T is not bounded. Take fn(t) = sin(nt) and use |Tf |∞ = |f ′|∞.
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2.1.2 Semigroups of bounded linear operators
A transition function introduces a semigroup of linear operators on Bb, often we must
work with a smaller function space with a Banach space structure. Take for example the
Laplacian ∆ which is essentially self-adjoint on L2 and generates a semi-group of linear
operators et∆.

Definition 2.1.4. A one parameter family of bounded linear operators Tt : E → E on a
Banach space E is said to be a semigroup if

T (t+ s) = T (t)T (s), T (0) = I, (2.1.1)

where I is the identity,

Example 2.1.5.

. Translation on the circle S1 = eis: Tt(eis) = ei(t+s).

. Let A ∈Mn×n, the set of n×n matrices. Define etA =
∑∞

n=0
(tA)n

n!
and Tt : Rn →

Rn by Ttx = etAx.

. Ttf(x) =
∫
X f(y)Pt(x, dy), f ∈ Bb(X ), for a transition function P .

. Translation semi-group. Let Ttf(x) = f(x+ t), then Tt is a semigroup of bounded
linear operators on BC(R;R).

. Conditioned shift. Let E0 denote the space of adapted L1 Ft-bounded processes.
Set ‖X‖ = supt E|Xt|. Let E be the equivalent class of functions: X = Y if
‖X − Y ‖ = 0. Define Ttf(s) = E[f(t+ s)|Fs], then Tt is a semi-group on E.

We semigroup generated by a Markov process has also the following properties:

Definition 2.1.6. A linear operator T on E is said to have

(i) the positive preserving property if Ttf ≥ 0 whenever f ≥ 0;

(ii) the conservative property if T1 = 1

(iii) the contractive property if ‖T‖ 6 1.

A semi-group of linear operators Tt on E is said to have these properties if for each t, Tt
does.

A semi-group of linear operators on Bb(X ) with positive preserving and conservative
property introduces a family of probability measures satisfying the Chapman-Komogorov
equation and P0(x, ·) = δx. In addition, x 7→ Pt(·,Γ) is measurable. We do not yet have
the joint measurability in (t, x) required for defining a transition function, it can be easily
obtained from a suitable continuity in time assumption.

If a Markov process is stochastic continuous, then for each f bounded continuous,
Ttf(x) = E(f(Xt) | X0 = x) → f(x). Since the time in the semigroup is taken from
an uncountable space, we would impose some regularity on t. A natural concept of for
a semigroup Tt on a Banach space E seems to be the norm continuity: ‖Tt − I‖ → 0,
however it is rare that a semi-group of interest is uniformly continuous. The continuity os
the image Ttf where f ∈ E is more suitable.

Definition 2.1.7. A semigroup of bounded linear operators on a Banach space E is uni-
formly continuous if

‖Tt − I‖ = sup
|x|=1

|Ttx− x| → 0,
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as t↘ 0. It is called strongly continuous if

lim
t↘0
|Ttx− x| = 0

for each x ∈ E.

If A is a n× n matrix, | exp(tA)x− x| = t|A
∑∞

n=1
(tA)n

n!
x| → 0 uniformly in x.

Example 2.1.8. An example of a non-strongly continuous semigroup on BC(R;R) is:
T0 = I and Tt = 0 for t > 0.

Exercise 2.1.9. Show that the translation semi-group is not strongly continuous onBC(R;R)
either. Identify its generator and a space on which it is strongly continuous.

Definition 2.1.10. Let T be a strongly continuous semigroup. We define its generator by

Lx , lim
t↘0

Ttx− x
t

(2.1.2)

if the limit exists. The domain of L is then defined by

D(L) , {x ∈ E : the limit (2.1.2) exists}.

It is clear that on D(L) we necessarily have that Ttx → x as t → 0. If Tt is a
contractive semigroup, limt↘0

Ttx−x
t

exists on a dense subset, Proposition 2.1.15 implies
that Tt is strongly continuous.

2.1.3 Uniformly continuous semi-groups
Bounded linear operators resembles matrix operators. A semigroup of bounded linear
operators on a Banach space is uniformly continuous if only if it is of the form Tt = etA

where A is a bounded linear operator on E. Good accounts of the semi-group theory can
be found in [EN00, DS88, Paz83].

Proposition 2.1.11. If A : E → E is a bounded linear operator, then etA is a uniformly
continuous semigroup and

d

dt
Tt = ATt, T0 = I.

Conversely every uniformly continuous semi-group on a Banach space if of the form Tt =
etA for some bounded linear operator A : E → E.

The first statement follows from that etA is norm convergent. Given Tt, we observe
that U(t) ,

∫ t
0
Tsds is a family bounded linear operator, and differentiable in t with

U̇(t) = Tt. Also, 1
t
U(t) converges as t ↓ 0 in norm to the identity, hence it is invertible

on [0, a] for some a > 0 and differentiable at 0. Then

Tt = U(t0)−1U(t0)Tt = U(t0)−1

∫ t0

0

Tt+sds = U(t0)−1

∫ t+t0

t

Tsds.

Consequently,
Tt = U(t0)−1 (U(t+ t0)− U(t))

is differentiable. Set A = d
dt
Tt|t=0 It is then easy to verify that

d

dt
Tt = lim

h→0

Tt+h − Tt
h

= lim
h→0

T (h)− I
h

Tt = Ṫ (0)Tt = ATt,

for all t > 0, d
dt
Tt = ATt.
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2.1.4 Strongly continuous semi-groups
We don’t expect a Markov semigroup uniformly continuous, however the generator of a
strongly continuous M-dissipative semigroup is the limit of bounded operators. This is
the content of Hille-Yosida theorem which we will discuss later.

Example 2.1.12. Let

Ttf(x) ,
1√
2πt

∫
R
f(y)e−

|y−x|2
2t dy.

(i) Then T is not strongly continuous on Bb(R). Indeed, let f(y) = 1{0}(y). Then
Ttf = 0 for all t > 0 and |Ttf −f |∞ = 1, concluding that Tt is not strongly contin-
uous on Bb. The same conclusion holds for any Markov process whose transition
function Pt(x, ·) is absolutely continuous with respect to the Lebesgue measure.

(ii) The heat semigroup will restricts to a semi-group on BC(Rn), it is however not
strongly continuous. Let f(x) = sin(x2).

Ttf(x) =
1√
2πt

∫
R

sin(y2)e−
|y−x|2

2t dy → 0,

for every t > 0, this converges to zero as x→∞, hence as t→ 0, |Ttf − f |∞ does
not converge.

Proposition 2.1.13. If Tt is a strongly continuous semigroup, there exist constants M >
1, ω > 0 such that ‖Tt‖ 6Meωt.

Proof. We first show that there exist a > 0,M > 0 with supt∈[0,a] ‖Tt‖ 6M . If not there
exists a sequence tn → 0 with ‖Ttn‖ → ∞. But by the continuity supn |Ttnx| is bounded
for every x, this contradicts the Uniform Boundedness Principle. For any t suppose that
t = Na+ δ. Then ‖Tt‖ 6 ‖Ta‖N‖Tδ‖ = M ·MN . Set ω = lnM to conclude.

Exercise 2.1.14. Let Tt : E → E be a semigroup on a Banach space E. Show that if Tt is
strongly continuous then for any x ∈ E, the map t 7→ Ttx ∈ E is continuous on (0,∞).

Proposition 2.1.15. The following statements are equivalent for a semigroup Tt on a
Banach space E.

(i) Tt is strongly continuous.

(ii) There exists δ > 0, and a number M > 0 such that

sup
t∈[0,δ]

‖Tt‖ 6M

and there exists a dense subset D of E such that limt↓0 Ttx = x, for every x ∈ D.

Proof. Suppose the (ii) holds. Let x ∈ E. Let ε > 0. Let y ∈ D with |y − x| 6 ε
3M+3

.
Choose 0 < δ0 < δ such that for t < δ0, |Tty − y| < ε/2. Then

|Ttx− x| 6 |Ttx− Tty|+ |Tty − y|+ |y − x| 6M
ε

3M + 3
+ ε/3 +

ε

3
.

concluding the continuity of Ttx at t = 0.

Example 2.1.16. The heat semi-group is a strongly continuous semi-group on C0. We first
take f ∈ C∞K . Since Ttf(x) = Ef(x+Bt) and

f(x+Bt) = f(x) +
1

2

∫ t

0

∆f(xs)ds+

∫ t

0

df(x+Bs)dBs.
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Taking expectation we obtain

Ttf(x) = f(x) +
1

2

∫ t

0

Tsf
′′(x)ds.

Suppose f has compact support K, Tsf ′′ converges uniformly on K. Hence Tt is a
strongly continuous on C∞K , which is a dense subset of C0. Since ‖Tt‖ 6 1, the con-
clusion holds.

Remark 2.1.17. It is a very deep and surprising fact that a semigroup is strongly continu-
ous iff it is weakly continuous in the sense that 〈f ∗, Ttf〉 → 〈f ∗, f〉 for each f ∈ E and
f ∗ ∈ E∗. See [EN00, pp40].

2.1.5 Equivalent formulations: semi-groups, generators, and resol-
vents

If L : D(L) ⊂ E → E is a closed linear operator on a Banach space E, we denote by
ρ(L) the resolvent set of L, it is the set of complex numbers λ such that λI − L is a
bijection (therefore has a bounded inverse):

Definition 2.1.18. . A number λ is said to be in the resolvent set ρ(L) of L, if λ−L
is a bijection with bounded inverse.

The spectral ofL is then defined to be C\ρ(L). Given λ ∈ ρ(L) the operator (λ−L)−1

is called the resolvent of L at λ.

Remark 2.1.19. If L is a closed linear operator on a Banach space E and λ − L has an
inverse, then its inverse is closed and bounded.

Proof. (1) An operator is closed⇔ its graph is a closed subset of E × E. (2) Since A is
closed, so is (λ − A)−1 (A pair (f, g) is in the graph of λ − A precisely when (g, f) is
in the graph of (λ − A)−1. ) (3) Since (λ − A)−1 is defined on the whole space E, it is
bounded by the closed graph theorem ( A linear map from a Banach space to another is
bounded if and only if its graph is closed).

Example 2.1.20. Let A be a bounded linear operator then,
∑∞

n=0
An

λn+1 is seen to be the
inverse of λ− L, agreeing with the formal expression (λ− L)−1 = 1

λ
(1− A

λ
)−1.

Definition 2.1.21. A family of bounded linear operators {Rλ, λ > 0} of bounded linear
operators on E is a strongly continuous contraction resolvents if the following holds

(i) limλ→∞ λRλx = x for any x ∈ E;

(ii) λRλ is a contraction for every λ > 0.

(iii) Rλ −Rµ = (λ− µ)RλRµ for any λ, µ > 0.

Example 2.1.22. If Tt is a strongly continuous contraction semi-group, we define

Rλf(x) =

∫ ∞
0

e−λtTtf(x)dt.

Then Rλf = (λ− L)−1f .

We can now state the connections between these concepts.

Theorem 2.1.23. There is a one to one correspondence among the following objects:
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(i) A strongly continuous contraction semi-group on E;

(ii) a densely defined closed linear operator (as its generator) (L,D(L)) such that
(0,∞) ⊂ ρ(L) and such that L is maximaly dissipative.

(iii) A strong continuous contraction resolvent.

They are related by the formula:

Lx = lim
t→0

Ttx− x
t

, Rλf =

∫ ∞
0

e−λtTtfdt, Tt = lim
λ→∞

etλ(λRλ−1).

Finally, if E is a Hilbert space these are in one to one correspondence with coersive
closed bilinear form on a dense subset of H .

Le D be a linear subspace of a Hilbert space and E : D×D → R a bilinear map. For
any a > 0, define

Ea(u, v) = E(u, v) + a〈u, v〉.
We say E is closed if its domain D is complete in E under the norm E1. It is positive if
E(u, u) ≥ 0 for any u ∈ D.

Definition 2.1.24. We say E is a coercive symmetric closed form if D is dense in H and
and satisfies the coercive condition: there exists a number K such that

|E1(u, v)| 6 K(|E1(u, u)|)
1
2K(|E1(, v)|)

1
2 , ∀u, v ∈ D. (2.1.3)

We say it is a coercive closed form its symmetric part is a symmetric closed form and the
coercive condition (2.1.3) holds for E1.

Theorem 2.1.25. [MR91] Let E be a coercive closed form on D ⊂ H , then there exists
two strongly continuous contraction resolvents Gα and Ĝα with Gα(H) ⊂ D(E) and
Ĝα(H) ⊂ D(E) and such that

Eα(Gαf, g) = 〈f, g〉 = 〈f, Ĝαg〉

for any f ∈ H and g ∈ D. Furthermore,

〈Gαf, g〉 = 〈f, Ĝαg〉.

Also if L denotes the linear operator corresponds to Gα, then Dom(L) ⊂ D and

E(f, g) = 〈Lf, g).

Definition 2.1.26. A coercive closed form is a Dirichlet form if for any f ∈ D, or any
f ∈ Dom(L) and g ∈ D one has f+ ∧ 1 ∈ D,

E(f + f+ ∧ 1, f − f+ ∧ 1) ≥ 0

and
E(f − f+ ∧ 1, f + f+ ∧ 1) ≥ 0.

If E is symmetric, the last two condition is equivalent to

E(f+ ∧ 1, f+ ∧ 1) 6 E(f, f).

We conclude this brief outline by nnoting that there is a Dirichlet form theory equiva-
lent to the continuous contraction semi-group theory. The Dirichlet property of the coer-
cive closed form corresponds to the sub-Markovian property; the coercive property cor-
responds to the contraction property and we expect E(fg) = 〈−Lf, g〉 for f ∈ Dom(L)
and g ∈ D.
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2.1.6 A mini Project
A possible project is to study Dirichlet forms and connect them to some Markov process
models. I shall describe another one.

Suppose that
∫
fdµ =

∫
Ttfdµ for any bounded continuous functions, so

∫
fdµ =∫

fd(Tt)
∗µ, then µ is an invariant measure for Tt.

Definition 2.1.27. Let µ be a probability measure. A bounded linear operator T on L2(µ)
is a Markov operator if

(i) f ≥ 0 ae implies that Tf ≥ 0 a.e.

(ii) T1 = 1

(iii) T ∗1 = 1.

The last properties is the same as
∫
fdµ =

∫
Ttfdµ. We think of T as a generalisation

of a doubly stochastic matrix.
Can T be an isometry? Isometry means that 〈Tf, Tg〉L2 = 〈f, g〉L2 (It is unitary if it

is furthermore surjective).
It turns out that a Markov operator on L2(X , µ) is an isometry if and only if the

restriction of T on L∞ is multiplicative (i.e. T (fg) = TfTg.) See [Arv86]– Markov
operators and OS-positive processes.

An example of a multiplicative Markov operator is given by Tf = f ◦ S where
S : X → X is a measure preserving transformation, S∗µ = µ, it is an isometry following
from it being a measure preserving transformation. An example of a measure preserving
transformation is Seiθ = e2iθ on S1 (This is the doubling map on [0, 1], S(t) = 2t mod 1.)
Let X = {0, 1}, µ({1}) = 1. Let S takes elements of X to 1. It is a measure preserving
transformation. In this case Tf(x) = f ◦ S = f(1) for any x ∈ X .

Any Markov process with T1f = f ◦ S where S is a measure preserving transfor-
mations is of the form P1(x, ·) = δx. An interesting concept ‘totally non-deterministic
process’ is associated to aperiodicity. See [Ver05] – What does a generic Markov operator
look like?

2.1.7 The Generator of a strongly continuous semi-group
An unbounded linear operator on a Banach space E is never defined on the whole space.
It is useful to know the domain of the generator, which is however often tricky to identify.
The domain can be thought of as ‘smooth’ functions. The semigroup Tt is thought of to
smooth out a function, or at least not to rough it, for t > 0. Similarly, integration

∫ t
0

is a
smoothing operation. The integral

∫ t
0
Tsxds is defined by Riemann sum on E.

Theorem 2.1.28. Let Tt : E → E be a strongly continuous semigroup on a Banach space
E. Let

(
L,D(L)

)
denote its generator. Then the following hold:

(i) If x ∈ E and t > 0, then ∫ t

0

Tsx ds ∈ D(L)

and

Ttx− x = L
(∫ t

0

Tsxds

)
.

(ii) If x ∈ D(L), then Ttx ∈ D(L) for any t > 0 and

d

dt
Ttx = TtLx = L(Ttx).
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(iii) D(L) is dense in E and L is closed.

Proof. (i) We have

1

h

(
Th

∫ t

0

Tsx ds−
∫ t

0

Tsx ds

)
=

1

h

(∫ t+h

h

Tsx ds−
∫ t

0

Tsx ds

)
=

1

h

∫ t+h

t

Tsx ds−
1

h

∫ h

0

Tsx ds→ Ttx− x

as h↘ 0 since t 7→ Ttx is continuous.
(ii) If x ∈ D(L) and t > 0, then

ThTtx− Ttx
h

= Tt
Thx− x

h
→ TtLx

by continuity of Tt. Hence, Ttx ∈ D(L) and LTtx = TtLx. Moreover,

d

dt
Ttx = lim

h→0

Tt+hx− Ttx
h

= TtLx = LTtx.

(iii) Since 1
t

∫ t
0
Tsxds ∈ D(L) for each x ∈ E and t > 0 and

x = lim
h→0

1

h

∫ h

0

Tsx ds,

we see that x ∈ D(L).
Finally we show that L is closed. Let (xn) ⊂ D(L), xn → x, and suppose that

Lxn → y. Then, by (ii),

Ttxn − xn =

∫ t

0

TsLxnds.

Taking n → ∞, we see that Ttx − x =
∫ t

0
Tsyds and Ttx−x

t
→ y. Thus, x ∈ D(L) and

Lx = y. Consequently, L is closed.

The following theorems shows that the generator of a strongly continuous semigroup
determines it.

Theorem 2.1.29. Let Tt and St be strongly continuous semigroups of bounded linear
operators with the same generator, then Tt = St for all t ≥ 0.

Proof. Let us denote the generator by L. Since D(L) is dense, and Tt, St are continuous
linear operators, it is sufficient to show that Tt = St on D(L). Note that S0 = T0. Take x
in the domain, then, for each r > 0, Srx, Trx ∈ D(L). Hence,

d

ds
St−sTsx = −LSt−s(Tsx) + St−s(LTsx) = 0.

In the last line, we used part (ii) of Theorem 2.1.28 to commute L and its generator. This
means that s 7→ St−sTsx is a constant, concluding the proof.

With stochastic differential equations of Markovian type, on a manifold without a
boundary, it is easy to extract the formal generator, we hope knowing the generator on C∞K
is sufficient to identify the transition functions. Then if the martingale problem is well
posed we are in good business.
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Example 2.1.30. Let Ttf(x) = Ef(x + Bt), where Bt is an n dimensional Brownian
motion. Then for f ∈ C2,

Ttf(x) =
1√

2πt
n

∫
f(x+ y)e−

|y|2
2t dy =

1√
2π

n

∫
f(x+

√
ty)e−

|y|2
2 dy.

Taylor expand around x gives, for some s ∈ [0, 1],

Ttf(x)− f(x) =
1√
2π

n

∫ √
t〈∇f(x), y〉+

1

2t
〈∇2f(x+ s

√
ty)y, y〉e−

|y|2
2 dy.

Using the mean zero property, for f ∈ C2
K ,

Ttf(x)− f(x)

t
=

1√
2π

n

∫
1

2
〈∇2f(x+ s

√
ty)y, y〉e−

|y|2
2 dy → 1

2
tr∇2f(x) =

1

2
∆f(x).

Exercise 2.1.31. Check that Tt preserves the space C0(Rn).

We emphasise that for two operators to be equal, their domains must be equal. It is,
as with solutions of a stochastic differential equation, sometimes easier to describe the
formal generator of a Markov process, determining the domain is more subtle. The role
played be the domain of a generator is significant. For example, let X = [0, 1] and let
L = 1

2
d2

dx2
, depending on their domains we may have a reflected Brownian motion or a

killed Brownian motion.

Example 2.1.32. (BM on R+, Reflecting boundary) How do we keep a Brownian motion
starting with x > 0 in [0,∞)? One way is to reflect it back. The reflected Brownian
motion behaves like a Brownian motion while away from 0, at 0, it moves only to the
right. A Brownian motion on R with initial condition x reflected at 0 behaves like a
Brownian motion from x before hitting 0, at 0 it reflects immediately, so it spent 0 time
on the boundary (

∫ t
0
1{0}(Xs)ds = 0.) A realisation of the reflected Brownian motion is:

x+Bt|.
Exercise. Show that |x+Bt| is a Markov process and the semi-group is: for x ≥ 0,

Ttf(x) =
1√
2πt

∫ ∞
0

f(y)e−
|y−x|2

2t + e−
|y+x|2

2t dy.

Then, Lf = 1
2
f ′′ with domain:

{f ∈ C0(R) : f ′ ∈ C0(R+), f ′′ ∈ C0(R+), f ′(0) = 0}.

Before closing this section, note that it is remarkable that a strongly continuous semi-
group on E is automatically differentiable on a dense set of E and on which x solves the
equation:

d

dt
Ttx = LTtx.

As we will see later it is often easy to identify the form of the generator for the semi-group
corresponds to a Markov process on the class C∞K , the space of smooth functions on the
compact support, should the space has no boundary. Then for such functions Ttf solves
the Cauchy problem d

dt
u = u with u(0, ·) = f .

Definition 2.1.33. The Markov uniqueness problem concerns whether there exists a unique
Markov process on the continuous path space over a complete Riemannian manifold such
that its Markov generator is the infinite dimensional Laplacian. This is an open problem.
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2.1.8 Preliminary to the next section
A linear operator (matrix) on Rn is invertible is equivalent to one of the following state-
ments: (1) A is injective, (2) A is surjective, (3) there exists a left inverse, (4) there exists
a right inverse.

Example 2.1.34. Consider the shift operator T on bounded sequences such that

A((a0, a1, . . . )) = (a1, a2, . . . ).

Then it is surjective, not injective, and it has a right inverseB : (a0, a1, . . . ) 7→ (0, a0, a1, . . . ),
but not a left inverse.

Proposition 2.1.35. If A : E → E is a linear operator on a Banach space with ‖A‖ < λ
then λ− A is invertible and

(λ− A)−1 =
1

λ

∞∑
n=0

An

λn
.

If T : E → F is bounded then its kernel is closed. Unlike in finite dimensions, the
range of a bounded linear operator needs not be closed.

Example 2.1.36. Let E = L1(µ) where µ = p(x)dx is a probability measure on R with
second moment, but with its third moment∞. We may assume that p > 0. Let g(x) =

1
1+x4

. We define the multiplication operator T : E → E by T = fg. Smooth functions
with compact supports are in L1(µ), but the constant function 1 is not in the range of T .

2.1.9 Resolvent Operator
Having seen that a strongly continuous semi-group Tt on a Banach space E is determined
by its generator L (which is always densely defined and closed), we define the resolvent
operator (Rλ, λ ≥ 0) of the semi-group and show that it is the inverse to λ− L.

Definition 2.1.37. For any λ > 0, we define Rλ : E → E by

Rλx =

∫ ∞
0

e−λsTsxds, ∀x ∈ E.

This is an improper integral using the strong continuity of Ts and that∫ ∞
0

e−λs|Tsx|ds 6 |x|
∫ ∞

0

e−λsds <∞.

This also shows give the norm bound: ‖Rλ‖ 6 1
λ

.

Proposition 2.1.38. If Tt is a strongly continuous contraction semi-group E, then Rλ is
a strongly continuous contraction resovlent on E.

Proof. We have seen already |λRλ‖ 6 1, we next show the continuity:

|λRλx− x| =
∣∣∫ ∞

0

λe−λsTsxds−
∫ ∞

0

e−sxds
∣∣ =

∫ ∞
0

e−u
∣∣Tu/λx− x∣∣du,

passing limit inside the integral by the contraction property of Tt and dominated conver-
gence. Finally let τλ, τµ be independent exponentially distributed random variables on R
with parameter λ > 0, µ > 0 respectively. Then, ETτλx =

∫∞
0
Tsxλe

−λds = λRλx and

ETτλTτµx = λµRλRµ.
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Now τ1 + τ2 is distributed as

λµ

λ− µ
(e−λs − e−µs)ds.

Using the semigroup property,

λµ

λ− µ
(Rλ −Rµ) = λµRλRµ

proving the resolvent equation Rλ −Rµ = (λ− µ)RλRµ.

Example 2.1.39. If Ttf(x) =
∫
X f(y)Pt(x, dy) on Bb(X ) be given by a transition func-

tion. Then

Rλf(x) =

∫ ∞
0

e−λtf(x)dt.

Observe that 0 6 f 6 1 implies that 0 6 Rλf 6 1. Also the conservative property
Tt1 = 1 is equivalent to Rλ1 = 1

λ
.

Proposition 2.1.40. Let Tt a strongly continuous contraction semi-group E with genera-
tor L, then the following statements hold for any λ > 0.

(i) For any x ∈ E, Rλx ∈ D(L);

(ii) For any x ∈ D(L), LRλx = RλLx.

(iii) Any number λ > 0 belongs to the resolvent set ρ(L) and Rλ = (λ− L)−1. Conse-
quently,

‖(λ− L)−1‖ 6 1

λ
.

Proof. (1) Let λ > 0, and x ∈E, by the contractive property,

‖Rλx‖ =

∥∥∥∥∫ ∞
0

e−λtTtx dt

∥∥∥∥ 6
∫ ∞

0

e−λt dt ‖x‖ 6 1

λ
‖x‖, (2.1.4)

hence Rλx is well defined. For any h > 0,

Th − I
h

Rλx =
1

h

∫ ∞
0

e−λt(ThTtx− Ttx)dt

=
1

h

∫ ∞
h

e−λ(t−h)Ttxdt−
1

h

∫ ∞
0

e−λtTtxdt

=
eλh − 1

h

∫ ∞
0

e−λtTtxdt−
1

h

∫ h

0

e−λtTtxdt

(h→0)−→ λRλ x− x.

Hence Rλx ∈ D(L) and
L(Rλx) = λRλ x− x, (2.1.5)

proving
(λ− L)Rλ = IE.

So, λ− L is injective on D(L), and Rλ is the right inverse.
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For x ∈ D(L),

Rλ(Lx)
definition

= lim
s→∞

∫ s

0

e−λtTt(Lx) dt

= lim
s→∞

∫ s

0

L(e−λtTtx) dt = lim
s→∞
L
( Rsλ︷ ︸︸ ︷∫ s

0

Tt(e
−λtx) dt

)
.

We used part (i) of Theorem 2.1.28. Since

Rs
λ → Rλx, L(Rs

λ)→ RλLx,

and L is closed by Theorem 2.1.28, L(Rs
λ)→ LRλ, concluding

RλLx = LRλx, Rλ(λ− L) = ID(L),

the latter follows from (2.1.5). Thus, Range(λ− L) = E, and (λ− L)−1 = Rλ.

If λ is a complex number with strictly positive real part, Rλ is well defined, which
allows to conclude that ρ(L) is contained in the open right half of the complex plane.
Strictly speaking, for this we should complexify the Banach space and extend the operator
to the complexification by L̃(x + iy) = Lx + iLy. Note that λ − L being injective,
surjective, invertible, as well as its boundedness are the same for L and L̃. With this set
up, the proof above leads to:

Corollary 2.1.41. Let L be the generator of a strongly continuous contraction semigroup
on E. Then ρ(L) ⊃ {λ : Re(λ) > 0}, for such λ,

‖(λ− L)−1‖ 6 1

Re(λ)
.

Example 2.1.42. Let E = {f : R+ → R+ : bounded and uniformly continuous}, then
Ttf(x) = f(x + t) defines a strongly continuous contraction semi-group on E. If λ =
−a + bi with a < 0, then f(t) = eλt ∈ E and in D(L). Now, Ttf = eλtf and Lf = λf ,
so the resolvent set ρ(L) is the right half of the plane.

2.1.10 M-Dissipative operators
In this section we show the Hille-Yosida theorem: a closed and densely defined linear
operator L on a Banach space E is the generator of a strongly continuous contraction
semigroup on E if and only if it is M-dissipative.

If A is a symmetric matrix and λ is in its resolvent set, then one expects that

‖(λ− A)−1‖ 6 1

d(λ, Spe(A))
.

For an unbounded operator, we do not expect this to hold. We make an assumption of this
nature.

Definition 2.1.43. Consider a linear operator A : D(A) ⊂ E → E.

. A is said to be dissipative if

‖(λ− A)x‖ ≥ λ‖x‖ ∀x ∈ D(A), ∀λ > 0.
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. A is said to be M-dissipative (maximal dissipative) if for any λ > 0, λ − A has an
inverse and

‖(λ− A)−1‖ 6 1

λ
. (2.1.6)

If A is M-dissipative, it is clearly dissipative. Indeed,

‖(λ− A)−1x‖ 6 1

λ
‖x‖, ∀x ∈ E, ∀λ > 0,

For any g ∈ D(A), simply replace x in the M-dissipative inequality with (λ− A)g.

Exercise 2.1.44. Suppose that A is closed and (λ−A) is invertible any λ > 0. Show that
A is dissipative if and only if A is M-dissipative.

Let E be a Hilbert space, andA : E → E a densely defined linear operator. Its adjoint
operator is defined on the set of x such that there exists an element of E which we denote
by A∗x with

〈A∗x, y〉 = 〈x,Ay〉, ∀ y ∈ Dom(A).

We say A is self-adjoint if A∗ = A. If A is a self-adjoint operator on a Hilbert space,
being dissipative means 〈Ax, x〉 6 0. This agrees with our intuition that A is sort of a
generalisation of a symmetric negative definite matrix (A self-adjoint operator is called
negative definite if 〈x,Ax〉 6 0 for any x ∈ Dom(A)). The following theorem holds,
[Paz83]:

Theorem 2.1.45. Let A be closed and densely defined. Suppose that both A and its dual
A∗ dissipative, then A is the generator of a strongly continuous semi-group.

We recall that the generator of a strongly continuous semigroup is dense. Anyhow, if
it is not dense we could think of getting ride of the superfluous parts.

Recall that ρ(L) = {λ ∈ C : (λ − L) : E → E is bijection}. If λ ∈ ρ(L) we denote
Rλ = (λ− L)−1 its inverse. Then LRλ = λRλ − id. M-dissipative means ‖Rλ‖ 6 1

λ
.

Lemma 2.1.46. Let L : E → E be a M-dissipative, closed, and densely defined operator.
Then,

lim
λ→∞

λRλ x = x, ∀x ∈ E.

Consequently, for every x ∈ D(L),

Lx = lim
λ→∞

λLRλ x.

Proof. Let x ∈ D(L) and denote Rλ = (λ− L)−1. We have:

‖λRλx− x‖ = ‖λRλx−Rλ(λ− L)x‖ = ‖RλLx‖ 6
1

λ
‖Lx‖ → 0,

we used the M-dissipative condition ‖λRλ‖ 6 1. Since D(L) is dense, this holds for all
x ∈ E.

Let us write Rλ = (λ− L)−1, then

Lλ , λLRλ = λ(λRλ − id) = λ2Rλ − λ.

Definition 2.1.47. Lλ is said to be the Yosida approximation for L.
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Lemma 2.1.48. Let L be a densely defined closed M-dissipative operator. Then Lλ is the
generator of a uniformly continuous semigroup of contractions which we denote by T λt .
Furthermore,

‖T λt x− T
µ
t x‖ 6 t‖Lλx− Lµx‖, ∀λ, µ ≥ 0.

Proof. Since ‖Lλ‖ 6 2λ, Lλ is a bounded operator and Tt = etLλ is a uniformly contin-
uous semi-group. Furthermore,

‖etLλ‖ = ‖et(λ2Rλ−λ)‖ = e−λt etλ
2|Rλ| 6 1.

Also,

‖etLλx− etLµx‖ =

∥∥∥∥∫ 1

0

d

ds
estLλ+(1−s)tLµxds

∥∥∥∥
=

∥∥∥∥∫ 1

0

t(Lλ − Lµ)estLλ+(1−s)tLµx ds

∥∥∥∥
6 t‖Lλx− Lµx‖.

Theorem 2.1.49 (Hille-Yosida theorem). A linear operator L on a Banach space E is the
generator of a strongly continuous contraction semigroup onE if and only if the following
statements hold.

(i) L is closed and densely defined.

(ii) L is M-dissipative.

Proof. =⇒ The only if part follows from Proposition 2.1.29 and Theorem 2.1.28.
⇐= Suppose that L is closed, densely defined, and M-dissipative. Then ro x ∈ D(L),

‖Lλx− Lµx‖ = ‖λLRλx− µLRµx‖ 6 ‖λLRλx− Lx‖+ ‖µLRµx− Lx‖

6 (
1

λ
+

1

µ
)‖Lx‖.

By Lemma 2.1.48,

‖T λt x− T
µ
t x‖ 6 t(

1

λ
+

1

µ
)‖Lx‖, ∀λ, µ ≥ 0.

So T λt x converges as λ→∞ uniformly in t on finite intervals. Set,

Ttx = lim
λ→∞

T λt x.

Then t 7→ Ttx is continuous as uniform limit. Similarly, ‖Tt‖ 6 1, and T0x = x.
Tt(Tsx) = limλ→∞ e

tLλ(Tsx). Since etLλ is a contradiction, we can approximate Tsf by
esLλ , which gives limλ→∞ e

tLλ(esLλx) = Tt+sx.
Finally let A denote its generator. Let x ∈ D(L). Then,

1

t
(Ttx− x) =

1

t
lim
λ→∞

(T λt x− x) =
1

t
lim
λ→∞

∫ t

0

d

ds
T λs x ds

=
1

t
lim
λ→∞

∫ t

0

LλT λs x ds =
1

t
lim
λ→∞

∫ t

0

T λs Lλx ds =
1

t

∫ t

0

TsLxds→ Lx.

Hence x ∈ D(A), on which L = A. Note that D(L) ⊂ D(A).
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By Theorem 2.1.29, any positive number λ ∈ ρ(A), (λ−A) is a bijection, and

(λ−A)(D(A)) = E.

By the M-dissipative property, so is (λ− L)−1, (λ− L)(D(L)) = E. In particular, since
L = A on D(L) ⊂ D(A),

(λ−A)(D(L)) = E.

As λ−A is injective, the two domains have to be the same.

Corollary 2.1.50. A closed densely defined linear operator L on E is the generator of a
strongly continuous contraction semigroup on E if and only if it is M-dissipative.

Reference: [Paz83, EN00].

Corollary 2.1.51. If Tt is a symmetric strongly continuous contraction semigroup on E,
then there exists a self-adjoint operator A bounded from below s.t. Tt = e−tA.

Proof. The generator L of Tt is closed and densely defined, and the resolvent ρ(L) ⊃
(0,∞). Also,

〈Lf, g〉 =

〈
lim
t→0

Ttf − f
t

, g

〉
= lim

t→0

〈
f,
Ttg − g

t

〉
,

hence L is symmetric. The spectrum of a closed positive symmetric operator are: the
upper half complex plane, the lower half, the whole space, or a subset of R. Hence
σ(L) ⊂ [0,∞) which means the range of (L± i) is E which implies that L is self-adjoint.
That σ(L) ⊂ (−∞, 0], which implies L is bounded from above. The two semi-groups,
with the same generator must agree: Tt = etL.

2.1.11
Example 2.1.52. Brownian motion with a drift: Consider f : R → R and let L = 1

2
f ′′ +

cf ′ with domain:
{f ∈ C0(R) : f ′ ∈ C0(R), f ′′ ∈ C0(R)}.

Example 2.1.53. (BM on R+, sticky boundary) L = 1
2
f ′′ with domain.

{f ∈ C0(R) : f ′ ∈ C0(R+), f ′′ ∈ C0(R+), f ′(0)− αf ′′(0) = 0}.

Hene α > 0 is a constant.
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Chapter 3

Markov Semi-groups

Let us now state the formal definition of the class of semigroups on a subset of measurable
functions we are going to study throughout these notes.

Definition 3.0.1. Let (Tt)t>0 be a semigroup on Bb(X ). If ‖Tt‖ 6 1 for all t > 0, (Tt)t>0

is called a contraction semigroup. If Ttf > 0 for all f > 0, we say that (Tt) is positivity
preserving. If Tt1 = 1, then it is called conservative. A conservative, positivity preserving
contraction semigroup is called a Markov transition semigroup.

Definition 3.0.2. If (Xt) is a Markov process on X and Tt is a semigroup of bounded
linear operators on a closed subspace E ⊂ Bb(X ), where E is measure separable, s.t.

Ttf(Xs) = E(f(Xt+s)|Fs), ∀f ∈ E,

we say that Xt corresponds to Tt.

Recall that the dual space E∗ to a Banach space E is the set of continuous linear
functions from E to R. Then E∗ is also a Banach space with the operator norm ‖`‖ =

supf 6=0
|`(f)|
‖f‖ . We remark that a positive linear functional ` : C(X ) → R is automatically

bounded and `(f) 6 `(‖f‖) = ‖f‖`(1). The Riesz representation theorem states that
if C(X ) is a compact metric the dual space C(X )∗ is the space of finite signed Borel
measures on X , with the total variation norm. ( It is customary to define the bilinear map:
〈`, f〉 = `(f).) The tale of caution to a positive answer to the question is that the dual of
Bb(X ) are not necessarily a subset of measures. To obtain some sort of measurability on
the transition probabilities, it would be helpful if the semigroup has continuity property.
The continuity in time of Ttf is automatic if f is continuous and Tt comes from a Markov
process that is continuous in probability. For continuous f , the spatial continuity of Ttf
comes from the Feller property, otherwise from the strong Feller property.

3.0.1 Measure Separating sets
Please familiarise yourself with material in this section ahead of the lecture.

The semi-group of linear operators associated to a Markov process with a transition
function is defined on the space of bounded (real-valued) measurable functions Bb(X ) on
X . Before we proceed to study the abstract theory of a semigroup of linear operators on a
Banach space E, we think of E as a space of functions, we explain that the function space
needs to be sufficiently large to be useful to us. ‘Being large’ we mean that for example
E should be rich enough to determine probability measures. Naturally, especially since
Bb(X ) is not separable, it is convenient to use a smaller set.

We should first formulate conditions which ensure that the semigroup (Tt) determines
the Markov process. For this we need the following terminology:
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Definition 3.0.3. A family of probability measures µn on X is said to converge weakly if
for all bounded continuous functions f ,∫

X
fdµn →

∫
X
fdµ.

In the sequel,⇒ indicates weak convergence.

See [Par67, Theorem 6.1, pp40] for equivalent statements.

Definition 3.0.4. A collection E of continuous functions is said to be separating (or
measure determining) if, for any two probability Borel measures µ, ν on X ,∫

X
fdµ =

∫
X
fdν ∀f ∈ E ⇒ µ = ν.

Recall that if X is in addition locally compact, C0(X ), the collection of real valued
functions on X vanishing at infinity, is separable. Let Kn be a collection of compact sets
with ∪nKn = X , this property is called countable at infinity, and let En be a countable
dense set of continuous functions with compact support on Kn. Then E = ∪nEn is a
dense subset of C0(X ).

Example 3.0.5. If X is a locally compact separable metric space then C0(X ) is measure
separating.

Remark 3.0.6. It is not necessary to assume elements of E are bounded, e.g. we may
want to use polynomial functions. For we it is convenient to have property that if E is a
measure determining set, the set of products of functions from E is measure separating
on all finite product spaces. This depends on the tail of the probability distribution of the
stochastic processes under the consideration.

Theorem 3.0.7 ([Par67, Thm. 5.9, pp39]). Let X be a complete metric space and µ, ν be
two probability measures on X . Then µ = ν, if∫

X
fdµ =

∫
X
fdν

for every bounded and uniformly continuous function f : X → R.

This theorem depends Urysohn’s lemma and the fact that every probability measure
on a metric space is regular and hence it is sufficient to show µ and ν agree on closed sets.

Let us now turn to product spaces, this will be useful for studying the finite dimen-
sional distributions of a stochastic process. Let Xi, be metric spaces, then the product
space Π∞i=1Xi is metrisable. The product space inherits the completeness and separability
properties.

Proposition 3.0.8 ([EK86, Thm 4.6, pp115]). LetXi be complete separable metric spaces,
and Ek ⊂ BC(Xk) is measure separating on Xk. Then

L = {Πn
i=1fi : fi ∈ Ek ∪ {1}, n ≥ 1}

is separating on Π∞i=1Xi.
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3.0.2 Markov transition / Probabilistic Semi-groups
Proposition 3.0.9 ([EK86, pp161]). Let X be a separable metric space and let E ⊂
Bb(X ) be closed, linear space which is measure determining. Let (Xt) be a Markov
process on X with initial distribution µ and (Tt) be a semigroup of linear operators on E
such that

E[f(Xt+s) | Fs] = Ttf(Xs), ∀f ∈ E.
Then Tt and µ uniquely determine the finite dimensional distributions of (Xt).

Proof. Let t > 0. Since for every f ∈ E,

E [f(Xt)] = E [Ttf(X0)] =

∫
X
Ttf(x)µ(dx) =

∫
X
f(x)(Tt)

∗µ(dx),

and E is measure determining, the distribution of Xt equals (Tt)
∗µ. For the multi-

dimensional distributions we use that

L = {f(x) = Πn
i=1fi(xi) : fi ∈ E ∪ {1}, n ≥ 1}

is measure separating on Πn
i=1X , see Proposition 3.0.8. We claim for any n ≥ 1, f1, . . . , fn ∈

E, and 0 6 t1 < · · · < tn,

E

[
n∏
i=1

fi(Xti)

]
= Tt1

(
f1 × · · · × Ttn−tn−1fn)(Xt1)

)
.

For n = 2, this is
E(f1(Xt1)f2(Xt2)) = E[(f1Tt2−t1f2)(Xt1)],

so the two point motion is determined. Assume this holds for k 6 n − 1, we prove by
induction and by the Markov property. For t1 < t2 < · · · < tn,

E[Πn
i=1fi(Xti)] = E

(
f1(Xt1)E(Πn

i=2fi(Xti)|Ft1)
)

= E
(
f1(Xt1)

(
Tt2−t1

(
f2 × · · · × Ttn−tn−1fn

)
(Xt1)

))
,

this concludes the proof.

3.1 The dual space of C0(X )
Let us now return to make connections with Markov processes (on a locally compact
space). The reason that we can even hope to construct a Markov transition function from
a semigroup of linear operators in the first place is Riesz’s representation theorem which
we recall below.

Definition 3.1.1. LetE be a vector space of functions with values inK (whereK = R
or C). A linear functional ` on E is a linear map ` : E → K. A positive linear
functional ` : E → R is a linear functional such that `(f) ≥ 0 whenever f ∈ E is a
function with f ≥ 0 pointwise.

Let E be a normed vector space, its dual space is the set of all bounded linear
functionals on E and is denoted by E ′. The dual space E ′ of a normed vector space
with the operator norm is always a Banach space. The dual space contains linear func-
tionals of the form `(x0) = ‖x0‖ and ‖`‖ = 1 (use Hahn-Banach Theorem). Then
‖x‖ = sup{ |`(x)|

‖`‖ : ` ∈ E∗, ` 6= 0}. The dual E ′ is large enough to separate points in E
(for any x 6= y in E, there exists ` ∈ E ′ with `(x) 6= `(y)).
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Definition 3.1.2. (i) A sequence xn in a normed spaceE is said to convergent (strongly
convergent) if ‖xn − x‖ → 0 for some x ∈ E.

(ii) A sequence xn in a normed space E is said to weakly convergent if there exists
x ∈ E such that `(xn)→ `(x) for every ` ∈ E ′.

Given a function space E, it is interesting to know what is its dual space. A desirable
property for functions space E is that E ′ consists of measures on E. In case E ′ consists
of measures then the weak convergence of fn ∈ E to f in E means:∫

E

fndµ→
∫
E

fdµ,

for every µ ∈ E ′. This is a very useful concept. If fn → f then ‖fn‖ is in fact bounded.
Indeed, for every µ ∈ E ′, the convergent real sequence µ(fn) ,

∫
E
fndµ is bounded.

From this the boundedness of the norm follows from the uniform boundedness principle.
A measure is said to have finite total variation if |µ|(E) = sup∞j=1

∑
|ν(Ej)| where E =

∪jEj is a partition of E.

Theorem 3.1.3 (Riesz-Markov). Let X be a locally compact metric space. Then the
dual of the C0(X ) is the space of signed Borel measures on X with finite total varia-
tion. In particular, if ` : C0(X )→ R is a positive linear functional, then there exists a
unique Borel measure µ on X with finite total variation such that

`(f) =

∫
X
fdµ ∀f ∈ C0(X ).

This is originally obtained for X compact, the measure is constructed by:

ρ(O) = sup{`(f) : f ∈ C(X), 0 6 f 6 1, supp(f) ⊂ O},
µ∗(E) = inf{ρ(O) : E ⊂ O,O is open}.

See e.g. [SS05] for a proof in the compact case.
Note. References for this section are: [DS88, RS72, SS05]

3.2 The C0-property
We are specially interested in a Markov process with a Markov transition function P , in
which case

Ttf(x) =

∫
X
f(x)Pt(x, dy) = Ex[f(Xt)],

defines a Markov transition semigroup on Bb(X ). There is, a priori, no regularity of the
mapping t 7→ Tt (strong continuity). It turns out that most Markov transition semigroups
are not strongly continuous on Bb(X ). It is however this regularity which allows us to
encode the semigroup in terms of a generator by means of the Hille-Yosida theorem. This
can be remedied by restricting the semigroup to a smaller space. We therefore define

E , {f ∈ Bb(X ) : lim
t→0
‖Ttf − f‖∞ = 0}.

This is the maximal subspace on which (Tt)t>0 is strongly continuous. An ε/3-argument
shows that E is a Banach space and, clearly, Tt(E) ⊂ E .
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One way to ensure the existence of the transition function is to exploit Corollary 3.2.2
and to develop a theory for Markov semigroups (Tt) which leave C0(X ) invariant. This
leads to the so-called Feller-Dynkin processes. Another possible resolution of the dilemma
is via Lp-space, provided we have a guess for the invariant measure and work on an L2

space, see Section 3.6 below.
We state the following theorem without proof, which can be proved similarly to the

proof that a super-martingale has a cádlág version. The interested reader may refer to
[RY99, Thm 2.7, pp91], [LG16], [RW00, Section III.7].

Theorem 3.2.1. If (Xt) is a Markov process with transition semigroup (Tt), which is
strongly continuous on C0(X ), then there exists a càdlàg modification of (Xt), which is a
(F+

t )-Markov process with the same transition semigroup.

Corollary 3.2.2. If X is locally compact and Tt : C0(X ) → C0(X ), t > 0, is a positive
preserving contraction semigroup and also defined on 1 with Tt1 = 1, then there exists a
transition function Pt(x, dy) on X such that

Ttf(x) =

∫
X
f(y)Pt(x, dy) ∀f ∈ C0(X ). (3.2.1)

Furthermore for any A ∈ B(X ), x 7→ Pt(x,A) is measurable.

Proof. Then for each x ∈ X and t > 0, we have a probability measure Pt(x, dy), which
is dual to the bounded positive linear map f ∈ C(X ) 7→ Ttf(x) ∈ R we define a linear
functional by f 7→ Ttf . Note that |Ttf(x)|∞ 6 |f |∞. The measurability of x 7→ Pt(x,A)
for any A ∈ B(X ) follows by a simple monotone class argument. By Theorem 3.2.1 the
Markov process has a cádág version, hence 7→ Pt(x,A) is measurable and has at most a
countable number of jumps. The joint measurability of (t, x) 7→ Pt(x,A) follows.

Exercise 3.2.3. Write down a Markov process for which E 6= Bb(X ).

We say that X defines a Feller process if Tt
(
BC(X )

)
⊂ BC(X ) for all t > 0.

Exercise 3.2.4. Show that X is Feller if and only if, for all t > 0, x 7→ Pt(x, ·) is
continuous as a map X → P(X ) if the latter is equipped with the topology of weak
convergence.

The terminology is not uniform across different textbooks. Sometimes authors call X
Feller if X is locally compact and Tt

(
C0(X )

)
⊂ C0(X ) where

C0(X ) , {f ∈ C(X ) : ∀ε > 0∃K ⊂ X compact : |f(x)| 6 ε ∀x ∈ X \K}.

For distinction we speak in this latter case of a Feller-Dynkin process. It is clear that
this approach is problematic for infinite-dimensional X . In fact, let X be an infinite-
dimensional normed space, then C0(X ) = {0}. Nonetheless, we have the following
result, see e.g. [RY99, Prop 2.4, pp89]:

Lemma 3.2.5. Let (Tt) be the Markov transition semigroup of a right continuous
Markov process with Tt

(
C0(X )

)
⊂ C0(X ). Then (Tt) is strongly continuous on

C0(X ).
(It is sufficient to replace the right continuity of Xt by limt↓0 Ptf(x) → f(x) for

any c and any f ∈ C0(X ).)
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Proof of Lemma 3.2.5. For α > 0, let Rαf ,
∫ t

0
e−αsTsg(x) ds. Let f = Rαg for some

g ∈ C0(X ). Then

Ttf(x) = eαt
∫ ∞
t

e−αsTsg(x) ds = eαtf(x)− eαt
∫ t

0

e−αsTsg(x) ds ∀x ∈ X ,

whence

‖Ttf − f‖∞ 6
(
eαt − 1

)
‖f‖∞ + eαt

∫ t

0

‖Tsg‖∞ ds→ 0

as t→ 0. Consequently, (Tt) is strongly continuous on Rα

(
C0(X )

)
.

We then show that Rα(C0(X )) is dense in C0(X ). If not, since C0(X )∗ separate points
and as a consequence of the Hahn-Banach and Riesz-Markov theorems, there is a finite,
non-zero (signed) measure µ on X such that∫

X
Rαg dµ = 0 ∀g ∈ C0(X ).

It follows by the (first) resolvent identity

Rβ = Rα − (β − α)RαRβ, ∀α, β > 0, (3.2.2)

we have ∫
X
Rβg dµ = 0 ∀g ∈ C0(X ), β > 0.

But this contradicts the fact that, since Ttg(x) = Ex[g(Xt)]→ g(x) by right-continuity of
Xt, βRβg(x)→ g(x) for any x ∈ X as β →∞. In fact, then by dominated convergence

0 = lim
β→∞

β

∫
X
Rβg dµ =

∫
X
g dµ, ∀g ∈ C0(X ),

i.e., µ ≡ 0, contracting the assumption that Rα(C0(X )) is not dense.

3.3 Strong Markov Property
For some purposes the natural filtration of a Markov process may be too small, e.g., the
hitting times of open sets by Brownian motion are no stopping times with respect to the
natural filtration. For a given filtration (Ft), we let F+

t ,
⋂
r>tFr denote its right-

continuous version.

Proposition 3.3.1. Let (Xt) be a Markov process with right-continuous sample paths. If
its transition semigroup (Tt) leaves BC(X ) or C0(X )-invariant, then (Xt) is an (F+

t )-
Markov process.

Proof. Let 0 6 s < t and ε > 0. For f ∈ BC(X ), we have that

E
[
f(Xt+s+ε) | F+

s

]
= E

[
E [f(Xt+s+ε) | Fs+ε] | F+

s

]
= E

[
Ttf(Xs+ε) | F+

s

]
.

By right-continuity and bounded convergence, we can take ε→ 0 to conclude

E
[
f(Xt+s) | F+

s

]
= E

[
Ttf(Xs) | F+

s

]
= Ttf(Xs).

for bounded continuous test functions f : X → R. To see that this in fact holds for any
bounded measurable f , we fix A ∈ F+

s and define the measures

µA(B) = E
[
E
[
1B(Xt+s) | F+

s

]
1A
]
, νA(B) = E [Tt1B(Xs)1A] .
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Both have the same total finite mass, and∫
X
f dµ =

∫
X
f dν ∀f ∈ C0(X ).

Since C0(X ) is measure-determining class, µA = νA, as required.

Let τ be a stopping time and recall that

Fτ ,
{
A ∈ F : A ∩ {τ 6 t} ∈ Ft ∀t > 0

}
defines a σ-field. The following two lemmas are standard:

Lemma 3.3.2. Let

τn ,
∞∑
k=0

k + 1

2n
1{ k

2n
6τ< k+1

2n

} +∞1{τ=∞}, n ∈ N.

Then τn is a stopping time for each n ∈ N and τn ↓ τ a.s.

With this one can show that

Lemma 3.3.3. If (Xt) is adapted and right-continuous, then Xτ1τ<∞ ∈ Fτ .

The next theorem shows that Feller processes are strong Markov:

Theorem 3.3.4. Let (Xt) be a right-continuous Markov process whose transition function
leaves either C0(X ) or BC(X ) invariant. Then it is strong Markov. If (Xt) is cádlág
(respectively continuous) , the Markov process in the canonical picture is:

E
[
Φ ◦ θτ1{τ<∞} | Fτ

]
= 1{τ<∞}EXτ [Φ], (3.3.1)

where Φ is a bounded measurable function on D
(
[0, 1],X

)
(on the Wiener space).

Proof. Let us first suppose that τ takes only a countable number of values {tk : k ∈ N}
with 0 6 t1 < t2 < · · · < . . . 6∞. Then, using Theorem 1.8.5, we get for each B ∈ Fτ ,

E
[
Φ ◦ θτ1{τ<∞}1B

]
=
∞∑
k=1

E
[
Φ ◦ θtk)1{τ=tk}1B

]
=

n∑
k=1

E
[
E [Φ ◦ θtk | Ftk ]1{τ=tk}1B

]
=

n∑
k=1

E
[
EXtk [Φ]1{τ=tk}1B

]
= E

[
EXτ [Φ]1{τ<∞}1B

]
.

Here we used the fact that B ∩ {τ = t} ∈ Ft for each B ∈ Fτ and t > 0.
If f ∈ Bb and Φ(X) = f(Xt), this is:

E
[
f(Xt+τ )1{τ<∞}|Fτ

]
= Ttf(Xτ )1{τ<∞}. (3.3.2)

Now assume a general τ , for the approximating sequence of Lemma 3.3.2,

E
[
f(Xt+τn)1{τn<∞}|Fτ

]
= Ttf(Xτn)1{τn<∞}.

By the right-continuity of X and the Feller property of Tt, for any f ∈ BC (or f ∈
C0(X )), (3.3.2) holds by bounded convergence, for any f continuous and bounded. By
the standard method, this holds for bounded measurable f . It then remains to prove this
for functions of the form Πn

i=1fk(xtk) and thus for all bounded measurable functions. For
continuous paths, the analogous conclusion obviously holds.
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The strong Markov property states that the process restarts at any stopping afresh.

Example 3.3.5. Let us return to Example 1.4.2, consider the transition function

Qt(x, dy) =

{
Pt(x, dy), if x 6= 0,

δ0(dy), if x = 0,

where Pt(x, dy) = pt(x, y) where pt(x, y) is the heat/Gaussian kernel. If x 6= 0, we have
a Brownian motion, e.g. P (Xt ∈ A) =

∫
A
pt(x, dy) for any t > 0. But when it hits

zero (it does in finite time), it gets stuck at 0: from this stopping time, this is no longer a
Brownian motion. However, the Markov property would require that xt+τ to behave as a
Brownian motion starting from 0. More precisely, let τ = inft>0{xt = 0}, then xτ+t = 0
for all t.

Let us take a look from the definition of the strong Markov property. A realisation of
the Markov process from x is:

Xt ,

{
x+Wt, if X0 = x 6= 0,

0, if X0 = 0,

for a one-dimensional Brownian motion (Wt)t>0. Take Φ(σ) = (σ(1))2. Suppose that
X(0) = 0, then EXτ (X(1))2 = 0, as X(t) = 0 for all time t when X(0) = 0. On the
other hand,

E((X1+τ )
2|Fτ ) = E((x+W1+τ )

2|Fτ ) 6= 0.

This Markov process is not Feller!! Let f be a continuous and bounded function,
then

Ptf(0) = f(0), Ptf(x) =

∫
R
f(y)pt(x, y) dy.

For t > 0, limx→0 Ptf(x) 6= f(0) in general. Take for example f(y) = y2.

3.4 Martingale Consideration

For the next result we require the measurability of the maps r → Lf(xr) and r 7→
LTs−rf(Xr), which can be obtained be assuming Xr is progressively measurable and
that r 7→ Trf(x) is measurable which will follow if Tt is strongly continuous.

Proposition 3.4.1. Let Tt be a strongly continuous semigroup on a Banach space E ⊂
Bb(X ) with generator L. Let (Xt) be a Cádlág Markov process corresponding to Tt.
Then for every f ∈ D(L),

M f
t = f(Xt)−

∫ t

0

Lf(Xr)dr

is a martingale.

Proof. Let s < t. Since f and Lf are bounded, for any A ∈ Fs,

E
(∫ t

s

Lf(Xr)dr1A

)
=

∫ t

s

E (LTr−sf(Xs) 1A) dr <∞.
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The cádlág property of Xr implies that r 7→ Lf(Xr) is measurable. It is then trivial to
see that

E(M f
t −M f

s |Fs) = E
[
f(Xt)− f(Xs)

∣∣Fs]− E
[∫ t

s

Lf(Xr)dr
∣∣Fs]

= Tt−sf(Xs)− f(Xs)−
∫ t

s

Tr−sLf(Xs) dr

= Tt−sf(Xs)− f(Xs)−
∫ r

s

LTr−sf(Xs) dr = 0

= Tt−sf(Xs)− f(Xs)−
∫ r

s

d

dr
Tr−sf(Xs) dr = 0,

In the last step we used the fact that LTtf = TtLf = d
dt
Ttf , for every f ∈ D(L).

This completes the proof.

The converse holds if E = C0(X ) or E = BC(X ). Recall from Theorem 3.2.1 for
the existence of a cádlag version of the Markov process.

Proposition 3.4.2. Let Tt be a strongly continuous semigroup on C0(X ) with generator L.
Suppose that (Xt) is a Cádlág Markov process corresponding to Tt and with deterministic
initial condition x. Suppose that f, g ∈ C0(X ) and

Nt = f(Xt)−
∫ t

0

g(Xr)dr

is a martingale. Then f ∈ D(L) and Lf = g.

Proof. Again the regularity on Xt implies that the integral
∫ t

0
g(Xr)dr is well defined.

Since Nt is a martingale,

E[f(Xt)]− E
[∫ t

0

g(Xr)dr

]
= EN0 = f(X0).

SinceXt is a Markov process corresponding to Tt with initial point x, E[f(Xt)] = Ttf(x).
Hence

1

t
[Ttf(x)− f(x)] =

1

t
E
[∫ t

0

g(Xr)dr

]
=

1

t

[∫ t

0

Trg(x)dr

]
,

Since Trg is continuous, the right hand side converges to g(x) and Lf = g.

Let Wt = (W 1
t , . . . ,W

m
t ) be an m-dimensional Brownian motion. Let Xk : Rn →

Rn, k = 1, . . . ,m, be vector fields on Rd. We consider the stochastic differential equation

dxt =
m∑
k=1

Xk(xt)dW
k
t +X0(xt)dt. (3.4.1)

Let ai,j(x) =
∑m

k=1X
i
k(x)Xj

k(x). Set

L =
1

2

n∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑
j=1

Xj
0(x)

∂

∂xj
. (3.4.2)

Exercise 3.4.3. Show that if the vector fields Xi are Lipschitz continuous, then for any
f ∈ C∞K ,

f(xt)− f(x0)−
∫ t

0

Lf(xr)dr

is a martingale.
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3.5 Martingale Problem
Definition 3.5.1. A right continuous Gt-adapted process xt is said to solve the martingale
problem for a linear operator L on a subspace of Bb(X ) with respect to the filtration Gt if
for every f ∈ D(L),

M f
t , f(xt)−

∫ t

0

Lf(xr)dr

is a Gt martingale.

The questions whether the martingale is well posed is a fundamental question, which
leads essentially to the strong Markov property. The convention is to take Gt the natural
filtration of Xt. It is also standard to assume that for f ∈ C∞K , instead of f ∈ D(L), that
M f

t is a martingale.

Definition 3.5.2. A measure Pµ on the canonical space Ω is said to solve the martingale
problem for L with initial condition µ if for every f ∈ D(L) and for πt the canonical
process,

M f
t , f(πt)−

∫ t

0

Lf(πr)dr

is a martingale with respect to the measure Pµ and (P0)∗Pµ = µ almost surely.

We do not have time to work with the martingale problem in great depth, will simply
go over the important results for stochastic differential equations on Rn for which the
following notion of local martingale problem is equivalent to the existence of a weak
solution.

Definition 3.5.3. A continuous process xt in Rn or its probability measure on the Wiener
space is said to solve the local martingale problem for

L =
1

2

n∑
i,j=1

ai,j
∂2

∂xi∂xj
+

n∑
i=1

bi
∂

∂xi
,

if for any f ∈ C∞K ,

M f
t , f(xt)− f(x0)−

∫ t

0

Lf(xr)dr

is a local martingale.

Let us consider the SDE (4.7.1) and its (formal) generator (3.4.2). Suppose that Xi

are Borel measurable. Then the SDE has a weak solution with distribution P if and only
if P is a solution to the local martingale problem for L. Suppose that for every x ∈ Rn,
the local martingale problem for L with initial distribution δx has a unique solution Px,
then strong Markov property holds for the family {Px}.

3.6 Lp-Semigroups and Invariant Measure
We introduce two examples of strongly continuous semi-groups on Lp.

Lemma 3.6.1. . (Minkowski’s integral inequality) Let f : Rm × Rn be measurable.
Then, for 1 6 p <∞,(∫

Rn

∣∣∣∣∫
Rm

f(x, y)dy

∣∣∣∣p dx) 1
p

6
∫
Rn

(∫
Rm
|f(x, y)|p dx

) 1
p

dy.
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In other words, ∥∥∥∥∫
Rm

f(·, y)dy

∥∥∥∥
p

6
∫
Rn
‖f(x, ·)‖p dx.

. (Young Inequality) Let f,K : Rn → R be measurable, f ∈ Lp and K ∈ L1. Then
the convolution f ∗K is in Lp for any 1 6 p 6∞:

‖f ∗K‖p 6 ‖f‖p‖K‖1.

Example 3.6.2. For the heat semi-group, we already have a transition semi-group, we are
only concerned with a space on which Tt is a strongly continuous semi-group. Indeed, on
Lp ∩ L∞, ‖Ptf‖p 6 ‖f‖p, by the Young inequality. The heat semigroup thus extends to
a semi-group on Lp by the contraction property and the fact that C∞K is dense in Lp.

To show the semi-group on Lp is strongly continuous, let f be smooth with compact
support. For any ε > 0 choose δ > 0 so |f(x) − f(y)| < ε/2 for |x − y| < δ and let
Kt(x) = Pt(0, x).∣∣∣∣∫

Rn
Kt(y)(f(x+ y)− f(x))dy

∣∣∣∣
∞

6
ε

2
+ 2|f |∞

∣∣∣∣∣
∫
|y|≥δ

1
√

2πt
n/2

e−
|y|2
2t dy

∣∣∣∣∣
∞

< ε

for t sufficiently small, |Ptf(x) − f(x)| → 0 for such f . Since |Ptf − f | is uniformly
bounded in Lp for any p, then the convergence is in Lp. For f ∈ Lp, choose fn → f in Lp

and fn smooth with compact supports, then

‖Ptf − f‖p 6 ‖Ptf − Ptfn‖p + ‖Ptfn − fn‖p + |fn − f‖p → 0.

Definition 3.6.3. Let X be a Markov process on X with transition semi-group Tt on
Bb(X ). A measure π on X is called invariant for X if∫

X
Ttf(x) π(dx) =

∫
X
f(x) π(dx)

for all t > 0 and f ∈ Bb(X ).

Lemma 3.6.4. Let π ∈ P(X ) be an invariant measure for a right-continuous sam-
ple paths Markov process X . Then (Tt) extends to a Markov transition semigroup on
Lp(X , π) for any p > 1. Furthermore Tt is a positive preserving strongly continuous
contraction on Lp.

Proof. Let f ∈ Lp(X , π) ∩ L∞. Then |Ttf |p =
∣∣∫ f(y)Pt(x, dy)

∣∣p 6 Tt|f |p by Jensen’s
inequality, whence

(‖Ttf‖Lp)p =

∫
|Ttf |pπ(dx) 6

∫
Tt(|f |p)π(dx) = ‖f‖Lp ,

since π is invariant. The set of continuous compactly supported functions is dense in
Lp, so Tt extends to a contraction semigroup on Lp(X , π). By the right-continuity of
the process, Ttf(x) → f(x) as t → 0 for any f ∈ BC(X ) ∩ Lp, |Ttf − f |Lp → 0 by
the dominated convergence, and this holds for any f ∈ Lp(X , π) since BC(X ) is a dense
subspace of Lp(X , π). The semigroup on Lp inherits the positive preserving property.
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3.7 Characterisation of Invariant Measures
Let X be a separable complete metric space. Let E be a closed subspace of Bb(X ).

Suppose that L generates a strongly continuous contraction semi-group Tt onE andE
is separating, then any solutionXt to the martingale problem forLwith initial distribution
µ is a Markov process for Tt and

E[f(Xt+s) | Fs] = Ttf(Xs) (3.7.1)

for any f ∈ E. See Theorem 4.1 in [EK86, pp182]. Furthermore uniqueness holds for
the martingale problem for L with the initial distribution µ.

The following theorem unifies several notions of invariant measures, see [EK86, pp239].

Theorem 3.7.1. Suppose that L generates a strongly continuous contraction semi-group
Tt on E and E is measure determining, and the martingale problem for L is well posed.
Let Xt (right continuous) be the solution for the martingale problem for L with the initial
condition µ. Then the following is equivalent for a probability measure π.

(i) The distribution of Xt is µ for all time t ≥ 0.

(ii) θtX and X have the same finite dimensional distributions.

(iii)
∫
X Ttf dπ =

∫
X f dπ, for every f ∈ E, t ≥ 0.

(iv)
∫
X Lfdπ = 0 for any f ∈ Dom(L).

Proof. . (ii) obviously implies (i).

. (i) =⇒ (ii) If L(Xt) = µ for some t > 0, then θtX is a solution of the martingale
problem with the initial value µ also. By the uniqueness to the martingale problem,
the process θtX and X have the same probability distributions.

. (ii) =⇒ (iii) Let f ∈ E, according to (3.7.1),∫
Ttf(x)µ(dx) = E[f(Xt)] = Ef(θsXt) =

∫
Tt+sf(x)µ(dx).

. (iii) =⇒ (i) The above shows that E[f(Xt)] = Ef(Xt+s)) for any f ∈ E. Since E
is measure determining, L(Xt) = L(Xt+s).

. (iii) =⇒ (iv) is immediate from the definition of the generator.

. (iv) =⇒ (iii), for f ∈ D(L),∫
X

(Ttf − f)dµ =

∫
X

∫ t

0

∂

∂s
Tsf ds dµ =

∫
X

∫ t

0

LTsf ds dµ,

the right hand side equals ∫
X
L
(∫ t

0

Tsf ds

)
dµ = 0.

By density of D(L) in E,
∫
X (Ttf − f)dµ = 0 for every f ∈ E and every t > 0.

This completes the proof.
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Chapter 4

Diffusion processes and diffusion
operators

4.1 Diffusion operators
Let x = Rn and

L =
1

2

n∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑
l

bl(x)
∂

∂xl
.

where, for any x, (ai,j(x)) is a non-negative symmetric matrix. The operator L is elliptic
if for any x and any ξ ∈ Rn,

n∑
i,j=1

ai,j(x)ξiξj > 0.

It is strictly elliptic if there exists c > 0 for any x and any ξ ∈ Rn, such that

n∑
i,j=1

ai,j(x)ξiξj > c|ξ|2.

For some authors, strictly ellipticity includes also an upper bound. Observe that π being
an invariant measure is equivalent to L∗π = 0 in the distributional sense. If π << dx, then
π = gdx and

∫
Rn Lfgdx = 0 for some Borel measurable function g for f ∈ Dom(L). It

is natural to work with L2(dx), in terms of the L2 adjoint operator∫
fL∗gdx = 0.

For elliptic operators, π has a (smooth ) density with respect to dx. An operator with
smooth coefficients and satisfying Hörmander’s bracket conditions has a smooth density.

Note that

L∗g =
1

2

n∑
i,j=1

∂2

∂xi∂xj
(ai,jg)−

∑
l

∂

∂xl
(blg)

is the sum of a diffusion operator and a zero order term V g where

V =
1

2

n∑
i,j=1

∂2ai,j
∂xi∂xj

−
n∑
l=1

∂bl
∂xl

.

Example 4.1.1. The Brownian motion on Rn has no finite invariant probability measure.
Its only invariant measure is dx. It has no non-constant harmonic functions.
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Example 4.1.2. The Ornstein-Uhlenbeck process has a unique invariant probability mea-
sure.

We write Lb g =
∑

l
∂
∂xl

(blg), the Lie derivative of g in the direction of b.

Exercise 4.1.3. Let b : Rn → Rn and V : Rn → R are smooth.

L =
1

2
∆ + Lb + L∇V .

Suppose that div
(
b e−2V

)
= 0. Show that e−2V dx is an invariant measure.

Definition 4.1.4. A diffusion process is a continuous strong Markov process.

4.1.1 Stochastic processes defined up to a random time

The stochastic process Xt(ω) := 1
2−Bt(ω)

is defined up to the first time Bt(ω) reaches
2. We denote this time by τ . For any given time t, no matter how small it is, there are
a set of path of positive probability (measured with respect to the Wiener measure on
C([0, t];Rd)) which will have reached 2 by time t:

P (τ 6 t) = P(sup
s6t

Bs ≥ 2) = 2P(Bt ≥ 2) =

√
2

π

∫ ∞
2√
t

e−
y2

2 dy.

This probability converges to zero as t → 0. We say that Xt is defined up to τ and τ is
called its life time or explosion time.

Let Rd ∪ {∆} be the one point compactification of Rd, which is a topological space
whose open sets are open sets of Rd plus set of the form (Rd \K)∪{∆} whereK denotes
a compact set. The one point compactification allows for the explosion of the solutions
Given a process (xt, t < τ) on Rd we define a process (x̂t, t ≥ 0) on Rd ∪ {∆}:

x̂t(ω) =

{
xt(ω), if t < τ(ω)
∆, if t ≥ τ(ω).

}
.

If Xt is a continuous process on Rd then X̂t is a continuous process on Rd ∪∆. Define

Ŵ (Rd) ≡ {Y ∈ C([0,∞);Rd∪∆) with the property Yt(ω) = ∆ if Ys = ∆ for some s 6 t}

The last condition means that once a process enters the coffin state it does not return.

4.2 Stochastic Flows

Consider an Itô SDE of Markovian type on Rn:

dxt =
m∑
k=1

Xk(xt) dB
k
t + σ0(xt) dt, (4.2.1)

where Xk : Rn → Rn, j = 0, . . . ,m, and {Bk}mk=1 are independent one-dimensional
Brownian motions. Solution to stochastic differential equations are Markov process, the
Markov property follows from the well-posedness of solutions.
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Definition 4.2.1. A solution to the SDE is a pair of adapted stochastic processes (Xt, Bt)
on a filtered probability space (Ω,F ,Ft,P) where (Bt) is a standard Brownian motion in
Rm such that the integral equation

xt = x0 +

∫ t

0

Xk(xs)dBs +

∫ t

0

X0(xs)ds

holds almost surely.

More generally, we assume Xt takes its value in Ŵ (Rd) then there is a well defined
explosion time τ after which xt(ω) = ∆. For the course we may assume non-explosion.

Definition 4.2.2. We say that pathwise uniqueness for the SDE (4.2.1) holds if for any
two solutions X and X̃ on the same filtered probability space and driven by the same
Brownian motion the following holds: If x0 = x̃0 a.s., then xt = x̃t for every t > 0 a.s.
We say Uniqueness in law holds if any two solutions with the same initial laws are the
same in distribution.

Definition 4.2.3. A stochastic process (xt) together with a Brownian motion (Bt) on a
filtered probability space (Ω,F ,Ft,P) is a strong solution if xt is adapted to the filtration
generated by the Brownian motion. Otherwise it is a weak solution.

A weak solution is tied with the well-posedness of the martingale problem.

Theorem 4.2.4. If for every x there exists one and only one solution Px to the martingale
problem on the space C∞K and if Px(xt ∈ A) is measurable then the canonical process xt
is a Markov process with transition function Px(xt ∈ A).

Example 4.2.5 (Tanaka’s example). Consider

dxt = sign(xt)dBt

where sign(x) = −1 if x 6 0 and 1 otherwise. The solution xt = x0 +
∫ t

0
sign(xs)dBs is

a martingale with quadratic variation t. By Lévy characterisation theorem, the distribution
of xt is N(x, t). Uniqueness in law holds. On any probability space, if xt is a solution so
is −xt. Hence pathwise uniqueness fails.

To construct a weak solution with initial value x, take any probability space and any
Brownian motion Bt. Define

Wt =

∫ t

0

sign(Bs)dBs.

Then ∫ t

0

sign(Bs)dWs =

∫ t

0

dBs = Bt −B0.

This means that the pair (Bt,Wt) is a solution to the SDE, with Wt the driving noise,

dxt = sign(xt)dWt.

By construction the driving Brownian motionWt is adapted to the filtration of the solution
Bt and has in fact strictly smaller σ-algebra.
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Proposition 4.2.6 (Tanaka’s formula). Let xt be a continuous semi-martingale. There
exists a continuous increasing process lt such that

|xt| = |x0|+
∫ t

0

sign(xs)dxs + lt.

The process lt is the local time of |xt| at 0. (Recall we defined the local time of a semi-
martignale to be the finite bounded variation part of |xt|. The two definitions agree.) The
process lt is non zero only when xt = 0:

∫ t
0
1xs 6=0dls = 0. [To prove this approximate |x|

by a sequence fn(x)→ |x| uniformly and f ′n(x)→ sign(x).]

With Tanaka’s formula, |Bt| =
∫ t

0
sign(Bs)dBs − Lt where Lt is the local time at

zero of the Brownian motion, σ{Wt} = σ{|Bt|}, and so the solution xt = Bt cannot be
determined by Wt alone. We would need to enlarge the filtration of the Brownian motion
Wt to obtain one adapted to Wt. This observation would be the key for the Yamada-
Watanabe theorem below.

Pathwise uniqueness implies uniqueness in law (for which one does not assume that
the solutions are defined on the same probability space). There is in fact a beautiful
theorem which states that if pathwise uniqueness holds, then uniqueness in law holds and
every solution is a strong solution. [RY99, Thm 1.7, Chapter IX, p 368]. The following
version of the theorem is taken from [IW89, Theorem 1.1, Chapter IV]:

Theorem 4.2.7 (Yamada-Watanabe). Suppose that pathwise uniqueness holds for (4.2.1)
and suppose that there exists a (possibly weak) solution for any initial condition. Then
the SDE has a unique strong solution in the sense below. There is a measurable map
F : Rn × C(R+,Rm) → C(R+,Rn), where the domain space is given a universally
complete product sigma-algebra, such that

. for any initial condition Y ∈ F0 and any m-dimensional Brownian motion B,
xt = Ft(Y,B) is a solution to (4.2.1) with X0 = Y a.s.,

. if xt is a solution to (4.2.1), then xt = Ft(X0, B) a.s.

We now letF (x,B) be the function of Theorem 4.2.7, as a stochastic process, Ft(x,B)
is adapted to the (completed) filtration generated by B. For 0 6 s 6 t, there exists
Fs,t(x,B) such that Fs,s(x, ω) = x a.s. and it satisfdies

Fs,t(x,B) = x+
m∑
k=1

∫ t

s

σk
(
Fs,r(x,B)

)
dBr +

∫ t

s

σ0

(
Fs,r(x,B)

)
. dr

The claim can be verified by a change of variable in time, using approximation theorems
for stochastic integrals. In particular, F0,t = F0. We call {Fs,t} the solution flow to the
SDE. We also write Ft , F0,t. An SDE is said to have no explosion if from any initial
point its (maximal) solution exists for all time.

Condition 4.2.8. [Linear Growth Condition] Suppose that Vj is locally Lipschitz for each
j = 0, . . . ,m and there is a constant C > 0 such that, for every x ∈ Rn,

|σk(x)| 6 C(1 + |x|), k = 1, . . . ,m,

〈σ0(x), x〉 6 C(1 + |x|2).

Theorem 4.2.9. Under Condition 4.2.8 pathwise uniqueness to the SDE (4.2.1) holds.
Moreover, for any initial condition X0 ∼ µ, there is a global strong solution.
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4.2.1 The Cocycle Property

Theorem 4.2.10. Assume that (4.2.1) has a unique global strong solution. Then, for any
0 6 s 6 t,

Ft(x,B) = Fs,t(Fs(x,B), B). (4.2.2)

and
Ft−s

(
Fs(x,B), θsB

)
= Ft(x,B) a.s., (4.2.3)

where θsσ = σ(· + s) − σ(s) is the shift operator. This is called the flow (or cocycle)
property.

Proof. This follows from the fact that for every t ≥ s,∫ t

s

Hr dWr =

∫ t−s

0

Hr+s d(θsWr), a.s..

This is due to the following fact for adapted sample continuous processes:

∑
Hti(Wti+1

−Wti)→
∫ t

s

Hr dWr

in probability along partitions of [0, t]. Observe that Ft(x) solves

Ft(x,B) = Fs(x,B) +
∑
k

∫ t

s

Xk(Fr(x,B))dBk
r +

∫ t

s

X0(Fr(x,B))dr.

Pathwise uniqueness shows that Ft(x,B) = Fs,t(Fs(x,B), B). Set yr = Fr+s(x,B), then

yt−s = y0 +
∑
k

∫ t

s

Xk(yr−s)dB
k
r +

∫ t

s

X0(yr−s)dr.

Hene Ft(x,B) = F0,t−s(Fs(x,B), θsB).

Problem: Try to work out a version with s replaced by a stopping time.

4.2.2 Measure preserving transformation, random dynamical sys-
tem, and ergodicity

Let (Ω,F ,P) be a probability space. A transformation on T : Ω→ Ω is measure preserv-
ing if T ∗P = P where T ∗P = P ◦ T−1 is the pushed forward measure of P by T .

Definition 4.2.11. Let T be a measure preserving transformation on a measure space. A
measurable set A is T - invariant if θ−1(A) = A. A measure preserving map T is said to
be ergodic if every T -invariant set has full or null measure.

Definition 4.2.12. A probability space (Ω,F ,P) together with a family of measure pre-
serving maps (θt, t ∈ I) is called a (metric) dynamical system.

The map θt is measure preserving if (θt)
∗(P) = P. An example of a dynamical system

is the Wiener space with θtω = ω(t+ ·)− ω(·), t ∈ R+.
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Definition 4.2.13. A random/stochastic dynamical system on a measurable space (X ,B)
over a metric dynamical system (Ω,F ,P, (θt)t∈I) is a measurable mapping

φ : I × Ω×X → X

with the cocycle property:

φ(0, ω, x) = x, φ(t+ s, ω) = φ(t, θsω) ◦ φ(s, ω).

This holds almost surely for all s, t ≥ 0,

See [Arn13] for detailed account of random dynamical systems.

Example 4.2.14. For each x, the solution flow Ft(x, ω) defined earlier is a random dy-
namical system.

Definition 4.2.15. If the cocycle identity holds for every {Ft(x, ω), t ≥ 0} on the com-
plement of a null set N , we say it has the perfect cocycle property.

A stochastic flow has the perfect cocycle property precisely when the null set N can
be taken independent of x.

Question. When does a stochastic flow has the perfect cocycle property?

4.2.3 Stationary noise, and stochastic dynamical systems
Definition 4.2.16. A stationary noise process is a quadruple consisting of a Polish space
W , a Feller transition Markov kernel (Pt) onW admitting a unique invariant probability
measure PW , and a semi-flow θt :W →W of measurable maps with the properties that:

(θt)
∗Pt(w, ·) = δw

for every w ∈ W .

Note that the last identity is: Pt(w, θtw′ ∈ A) = 1A(w).

Definition 4.2.17. A stochastic dynamical system on a Polish space X over a stationary
noise process (W , Pt,PW , θt) is a map φ : R+ × X × W → X , with the following
properties. Writing φt(x,w) = φ(t, x, w).

(i) For every s, t > 0 and x ∈ X and all w ∈ W ,

φ0(x,w) = w,

φs+t(x,w) = φs(φ(t, θtw), w).

(ii) For every T > 0, x ∈ X and w ∈ W , define ΦT (x,w) : [0, T ]→ X by

ΦT (x,w) = φt(x, θT−tw).

(a) Then ΦT ∈ C([0, T ],X ).

(b) (x,w) 7→ ΦT (x,w) is continuous from X ×W to C([0, T ],X ).

Example 4.2.18. Let ψt be the stochastic flow of a stochastic differential equation, let us
define φt(x,w) = ψt(x, θ

−1
t w).
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4.2.4 Markov Property
It is now easy to prove the Markov property of the solution:

Theorem 4.2.19. Assume that the SDE (4.2.1) has a unique global strong solution. Let
Pt(x, ·) denote the law of Ft(x,B). Then, for any A ∈ B(Rn) and any 0 6 s < t,

P(xt ∈ A | Fs) = Pt−s(xs, A) a.s.

Proof. For any g ∈ Bb(Rn), we have that

E [g(xt) | Fs] = E
[
g
(
Ft−s

(
xs, θsB)

))
| Fs
]

= E
[
g
(
Ft−s(x,B)

)] ∣∣∣
x=Xs

=

∫
Rn
g(y)Pt−s(Xs, dy).

The map t 7→ Pt(x,A) inherits measurability from that of t 7→ Ft(x, ω). How about
measurability in x? This is easy to see if we have an explicit formula and if there exists a
(global) smooth stochastic flows. Also we can use Corollary 3.2.2 for this when the semi-
group has the C0-property. See Section 4.6 for whether the solutions has the C0-property.

4.3 Ergodic Theorems for Markov Processes
If a continuous time homogeneous Markov process (xt) start from an invariant measure
π, let Pπ denote its distribution on the path space C(X ) = C(I,X ) where I ⊂ R+ is an
interval. The Markov property implies that given the transition function, π and Pπ are
mutually determined. Consider (C(X ),B(C(X )),Pπ) and let θt be the shift map on path
space: if σ : R+ → X then θtσ = σ(t + ·). Then θt+s = θt ◦ θs and θ0 the identity map.
By Theorem 3.7.1, the Markov process is stationary, the measures Pπ are shift invariant.
In particular, (C(X ),B(C(X )),Pπ) together with θtω = ω(t + ·) is a metric dynamical
system.

Definition 4.3.1. Let T be a measure preserving transformation on a measure space. A
measurable set A is T - invariant if θ−1(A) = A. A measure preserving map T is said to
be ergodic if every T -invariant set has full or null measure.

Definition 4.3.2. We say an invariant measure π is ergodic if Pπ is ergodic w.r.t. every θt.

Remark 4.3.3. For discrete time Markov processes, we have the concept of the smallest
time unit, we only need to consider the case of t = 1.

For Markov processes with continuous time, we introduce the following definition.

Definition 4.3.4. . A set A is invariant if θ−1
t (A) = A for every t.

. A measure π is an ergodic invariant measure for a Markov process if for every
invariant set A, Pπ(A) ∈ {0, 1}.

A useful theorem is the following:

Theorem 4.3.5. If a time homogeneous Markov process has a unique invariant probabil-
ity measure, then Pπ (and π) is ergodic.

The set of invariant probability measures for a Markov process is a convex set, It turns
out that the set of ergodic invariant probability measures are precisely the extremal points
from the set.
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Theorem 4.3.6. Let π be an invariant probability measure of time homogeneous Markov
process, then π is ergodic if and only if it is an extremal of the convex set of probability
measures.

The support of a measure is the intersection of all closed sets of full measure. A point
x is in the support of the measure if and only if every open set containing x has positive
measure.

Theorem 4.3.7. Suppose that the transition semi-group Tt is strong Feller (or asymptot-
ically strong Feller). If µ1 and µ2 are two distinct invariant probability measures for Tt,
then supp(µ1) ∩ supp(µ2) = ∅.

Corollary 4.3.8. If the support of every invariant probability measure of a strong Feller
transition function contains a common point, then it is ergodic.

4.3.1 Birkhoff’s ergodic theorem
Let T be a measure preserving transformation on a probability space. Let I denotes the
set of T -invariant sets, it is called the invariant σ-algebra.

Theorem 4.3.9. If T is a measure preserving transformation and f ∈ L1, then

1

n

n∑
k=1

f(T kx)→ E(f |I)

almost surely as n→∞.

If the measure is ergodic the invariant σ-algebra is trivial, then E(f |I) = E[f ].

Theorem 4.3.10. Let yt be a stationary ergodic Markov process with invariant measure
π then for any f ∈ L1(π), then as t→∞,

1

t

∫ t

0

f(ys)ds→
∫
fdπ

almost surely.

An application is the following stochastic averaging theorem. Suppose that f is Lips-
chitz continuous and yt an ergodic Markov process with exponential rate of convergence
(this exponential condition is over kill, but makes the proof very easy), then the solutions
to the following equations

dxεt = f(xεt , y tε )

converges to that of the ODE ẋt = f̄(xt) where f̄(x) =
∫
f(x, y)dy.

4.4 Global smooth flows/ strong completeness
A solution Ft(x, ω) to an SDE is defined for a set of full measure, and this set of full
measure may depend on x.

Definition 4.4.1. Suppose that the SDE has a unique strong solution and is conservative.
we say the SDE is complete.
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Definition 4.4.2. An SDE is said to have a global smooth solution flow (or to be strongly
complete) if it is complete and there exists a version of F such that (t, x) 7→ Ft(x, ω) is
continuous on [0, T ]× Rd almost surely for any T > 0.

Remark 4.4.3. If an ODE ẏt = V (yt) is well posed and has no explosion, we say the vector
field is complete. If it is complete and if V is C1, then (t, x) 7→ Ft(x) is continuous. —-
This may fail for an SDE. Hence, if an SDE has a global solution flow, we say that it is
strongly complete.

Let V be a C1 vector field on R, then ẋt = V (xt)dBt is strongly complete if complete.

Example 4.4.4. [Elw78] Let dxt = dBt on Rn \ {0} where n ≥ 2. Then Ft(x, ω) =
x + Bt(ω) exists for all time for almost surely all ω (for a BM does not hit a point.) But
the SDE is not strongly complete. Given any ω and any time t there exists x such that
x+Bt(ω) = 0.

The infinitesimal generator of an SDE does not determine the flow problem.

Example 4.4.5. Let L = r4∆ where r2 = x2 + y2. Then log r is a Lyapunov function. So
the Markov process with this generator is conservative.

. The following equation is strongly complete.

dxt =
xt
rt
dB1

t −
yt
rt
dB2

t

dyt =
yt
rt
dB1

t +
xt
rt
dB2

t

It can be written as dzt = zt
|zt|dBt on C.

. The following is not strongly complete

dxt = (y2
t − x2

t )dB
1
t + 2xtytdB

2
t

dyt = −2xtytdB
1
t + (y2

t − x2
t )dB

2
t .

This is Elworthy example on R2 \ {0}, turned into R2 by x 7→ 1
x
.

In the last example, the vector fields are quadratic functions of x, might be asking
whether the problem comes from the vector fields grows too fast? In fact you would
find examples of SDEs with C∞ smooth and bounded vector fields, for which there is no
global smooth solution flows, see [LS11].

Theorem 4.4.6. Suppose that the SDE is strongly complete. Then the family of probabil-
ity measures Pt(x, ·) defined by the solution flow is a transition function. Furthermore,
the solution Ft(x) is a Markov process with transition function Pt(x, ·) and the initial
distribution δx.

Proof. Since (t, x) 7→ Ft(x, ω) is continuous, for every A ∈ B(X ), (t, x) 7→ Pt(x,A) is
measurable. Furthermore,

Pt+s(x,A) = P
(
Ft(x, ω) ∈ A

)
= EE

(
1A(Fs,s+t

(
Fs(x, ω), θs(ω)

)
|
)

= EE
(
1A

(
Fs,s+t

(
Fs(x, ω), θs(ω)

))
| Fs

)
= E

(
(Pt1A)(Fs(x, ω))

)
=

∫
X
Pt1A(y)Ps(x, dy)

=

∫
X
Pt(y, A)Ps(x, dy).

Also, since F0(x) = x, P0(x,A) = δx.
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Remark 4.4.7. This continuous dependence property is essential for numerical simula-
tion of solutions. Note that stopping times inf{t : |Ft(x)| ≥ R} does not depend on x
continuously, in general.

4.5 The derivative flow
Let us consider x 7→ Ft(x, ω). Let us denote by vt = TFt(v0) its derivative in the direction
v0, whenever it exists.

Let us change notation and let Xk, A be vector fields on a complete connected Rie-
mannian manifolds (e.g. Rn, the spheres, and the tori). On M = Rn, Xk : Rn → Rn and
A0 : Rn → Rn. Consider

dxt =
m∑
k=1

Xk(xt) ◦ dBk
t + A(xt)dt. (4.5.1)

We have to use Stratonovich integral on a manifold. On Rn this translates to

dxt =
m∑
k=1

Xk(xt)dB
k
t + Z(xt)dt,

where Z = A + 1
2

∑m
k=1DXkXk. The difference between the two is that the Itô form

equation required one less degree of regularity. We shall not be worried about the reg-
ularity and assume comfortable Xk in C2 (or in C3 to make it even simpler) and and
X0 ∈ C1.

Then there exists a unique solution Ft(x, ω) up to an explosion time τ . We shall
mainly assume τ(x, ω) =∞ for every x, although this is not necessary. Then

lim
ε→0

Ft(x+ εv, ω)− Ft(x, ω)

ε

exists in probability and solves the following equation (the derivative equation)

dvt =
m∑
k=1

(DXk)xt(vt) ◦ dBk
t + (DA)xt(vt)dt,

where (DXk)x(v) and (DA)x(v) denote the directional derivatives of Xk and A in the
direction of v at the point x.

On a manifold, we use for example the Levi-Civita connection to differentiate the
vector fields

Dvt =
m∑
k=1

(∇Xk)xt(vt)dB
k
t + (∇A)xt(vt)dt.

Lemma 4.5.1. Suppose that Xi, A are in C2 with bounded derivatives. Let x, v be fixed.
Set

Gε
t ,

1

ε
(Ft(x+ εv)− Ft(x)).

Then supε∈(0,1] supt6T E|Gε
t |p <∞ for any p ≥ 1.

Proof. (exercise)

Lemma 4.5.2. Suppose that Xi, A are in C2 with bounded derivatives. Fix x, v again.
Then,

E|Gε
t −Gε′

s |2p . |s− t|p + |ε− ε′|p
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Proof. We will take p = 2 and s = t in the proof, it is not difficult to extend the proof
below to the general case. Ee denote xεt = Ft(x+ εv) and xt = Ft(x). Then,

dGε
t =

1

ε

(
σ(xεt)− σ(xt)

)
dBt +

1

ε

(
A(xεt)− A(xt)

)
dt.

By taking a stopping time if necessary, we could assume the local martingale part in the
formula below, which we denote by Nt, to be a martingale.

d

dt
|Gε

t −Gε′

t |2 = Nt + 2

〈
Gε
t −Gε′

t ,
1

ε

(
A(xεt)− A(xt)

)
− 1

ε′

(
A(xε

′

t )− A(xt)
)〉

dt

+
m∑
k=1

∣∣∣∣1ε(Xk(x
ε
t)−Xk(xt)

)
− 1

ε′

(
Xk(x

ε′

t )−Xk(xt)
)∣∣∣∣2 dt.

By Taylor’s expansion,

1

ε
(A(xεt)− A(xt)) =

∫ 1

0

(DA)xt+r(xεt−xt)(G
ε
t)dr,

Hence,
1

ε

(
A(xεt)− A(xt)

)
− 1

ε′

(
A(xε

′

t )− A(xt)
)

=

∫ 1

0

(DA)xt+r(xεt−xt)(G
ε
t)− (DA)xt+r(xε′t −xt)

(Gε′

t )dr

=

∫ 1

0

r(D2A)xt+r(xεt−xt)(G
ε
t , (x

ε
t − xε

′

t ))dr

+

∫ 1

0

(DA)xt+r(xε′t −xt)
(Gε

t −Gε′

t )dr.

Putting everything together, Nt, to be a martingale.

E|Gε
t −Gε′

t |2 6 sup
s6t

E|Gε
s|2 sup

s6t
E|xεt − xε

′

t |2 +

∫ t

0

E|Gε
s −Gε′

s |2dds.

Since
E|xεt − xε

′

t |2 6 |ε− ε′|2,
the required estimates for p = 1 follows. The estimates for 2p can be obtained analo-
gously.

Theorem 4.5.3. [Li94c, Theorem 3.1] Suppose that Xi are C2 and A ∈ C1. Suppose that
ζ(x0) =∞ a.s. for some x0. Suppose that

sup
x∈K

E

(
sup
s6t
‖TxFs1s<ζ(x)‖n

)
<∞, (4.5.2)

Then the SDE is strongly complete.

Let

H(v, v) = 2〈DA(v), v〉+
∑
k

|DXk(v)|2 +
∑
k

〈∇2Xk(Xk, v), v〉

+
∑
k

〈∇Xk(∇Xk(v)), v〉+
∑
k

|∇Xk(v)|2

+ (n− 2)
m∑
k=1

1

|v|2
〈DXk(v), v〉2.
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Theorem 4.5.4. [Li94c, Thm 5.1+section 6] Suppose that Xi are C2 and there is no
explosion. Assume there is a function f : Rn → R+ such that:

(i) for all t > 0, K compact.

sup
x∈K

E
(
e6n2

∫ t
0 f(Fs(x))ds

)
<∞,

(ii)
∑

k |DXk(x)|2 6 f(x).

(iii) H(x)(v, v) 6 6pf(x)|v|2

Then

E

(
sup
s6t
|TxFs|p

)
< cE

(
exp6n2

∫ t
0 f(Fs(x))ds

)
.

In particular the SDE is strongly complete and the random dynamical system Ft(x, ω)
has the perfect cocycle property.

4.5.1 Examples
We will give two examples for which the strong completeness holds. Consider

dxt =
m∑
k=1

Xk(xt)dB
k
t + A(xt)dt.

Then

H(v, v) = 2〈DA(v), v〉+
∑
k

|DXk(v)|2 + (n− 2)
m∑
1

1

|v|2
〈DXk(v), v〉2.

Lemma 4.5.5. Assume non-explosion for simplicity. For any C2 function g,

E(ecg(xt)) 6 ec(g(x0)+kt

where k is a constant, provided that 1
2

∑
i |Dg(Xi)|2 + 1

2

∑
Dg(Xi, Xi) + Dg(A) is

bounded above.

A straightforward application of Theorem 4.5.4 gives two new results:

Theorem 4.5.6. [Li94c, section 6] If either Condition 4.5.7 or Condition 4.5.8 holds, the
SDE is strongly complete.

Condition 4.5.7. Suppose that each Xk, A are C2 and C1 respectively and there is a
constant C > 0 such that, for every x, v ∈ Rn,

|Xk(x)| . 1 + |x|, k = 1, . . . ,m,

〈A(x), x〉 . 1 + |x|2,
|DXk(x)| . 1 + ln(1 + |x|2), k = 1, . . . ,m,

〈DA(x)(v), v〉 . (1 + ln(1 + |x|2))|v|2.

Condition 4.5.8.

|Xi(x)| . c(1 + |x|2)
1
2
−ε

〈x,A(x)〉 . c(1 + |x|2)1−ε

|DXi(x)|2 . c(1 + |x|2)ε

〈DA(x)(v), v〉 . c(1 + |x|2)ε|v|2.

If Xi are globally Lipschitz continuous, this can be proved using fixed point theorem.
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4.5.2 Local smooth flow
We will now introduce the local flow theorem, a theorem of Carverhill-Elworthy and H.
Kunita [Kun90]

Theorem 4.5.9. Suppose that Xk are C2. Then there exists a unique solution (Fs,t(x, ω))
and life time ζ(x, ω)) such that there exists a null set outside of which the following holds:

(i) For each x, (F0,t(x, ω), t < ζ(x, ω)) is the maxima solution with initial value x.

(ii) Let
Mt(x, ω) = {x : t < ζ(x, ω}.

On Mt(x, ω), for 0 6 s 6 t,

Fs,t ◦ F0,s(x, ω) = F0,t(x, ω).

4.6 The C0-property
Theorem 4.6.1. Assume that Xi are locally Lipschitz and grow at most linearly (The
drift only need to have the bound 〈X0(x), x〉 6 C(1 + |x|2)). Let L be the infinitesimal
generator.

(i) If f is continuous, so is Ptf (The Feller property).

(ii) If f ∈ C0, so is Ptf (The C0-property).

(iii) Pt is a strongly continuous semi-group on C0.

(iv) If f ∈ C0 ∩ C2
b , then Ptf solves the Cauchy problem ∂u

∂t
= Lu with u(0) = f .

Proof. (1) The Feller property follows from the bounded and continuity of the map x 7→
f(Ft(x)).

(2) Let f ∈ C0(Rn). For any ε > 0, choose a compact set K = B(x,R/2) such that
|f(x)| 6 ε

2
outside of K.

Let |x| > R. On {|Ft(x)− x| 6 R/2}, we have |Ft(x)| ≥ |x| − |Ft(x)− x| > R/2.
Then, ∣∣Ptf(x)

∣∣∣ 6 ∣∣∣E[f(Ft(x))1{|Ft(x)−x|>R/2}

]∣∣∣+
∣∣∣E[f(Ft(x))1{|Ft(x)−x|6R/2}

]∣∣∣
6 |f |∞P(|Ft(x)| ≥ R/2) +

ε

2
.

Since E|Ft(x)−x|2 6 C(t2 + t), P(|Ft(x)| ≥ R/2) 6 1
R
C(t2 + t)→ 0, as x→∞. This

shows that Ptf ∈ C0.
(3) If f ∈ C0, then∣∣Ptf(x)− f(x)

∣∣∣
∞

6
∣∣∣[E[f(Ft(x))− f(x)]1{|Ft(x)−x|6ε}

]∣∣∣+
∣∣∣[(Ptf(x)− f(x))1{|Ft(x)−x|≥ε}

]∣∣∣
6 sup

y∈Bε(x)

|f(x)− f(y)|+ 2‖f‖∞P({|Ft(x)− x| ≥ ε})→ 0,

as ε→ 0. This implies that Pt is a strongly continuous semigroup on C0.
By Itô’s formula, if f ∈ C2

K ,

f(xt) = f(x0) +

∫ t

0

df(Xk(xs))dB
k
s +

∫ t

0

Lf(xs)ds.
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he local martingale part is a square integrable martingale:

E
(∫ t

0

df(Xk(xs))dB
k
s

)2

=

∫ t

0

E|df(xs)|2ds 6 |df |∞
∫ t

0

E(|xs|2)ds <∞.

Since f ∈ C0, Lf ∈ C0, by Proposition 3.4.2, f is in the the domain of the generator A of
the semi-group Pt and Af = Lf .

Alternatively, we could prove the last statement as follows:

Ptf(x0) = Ef(xt) = f(x0) + E
∫ t

0

Lf(xs)ds.

Since

Lf(x) =
1

2

n∑
i,j=1

∑
k

(Xk
i σ

k
j )(x)

∂2f

∂xi∂xj
(x) + Af(x).

Then Lf 6 c(1 + |x|2). Since E sups6t |xs|2 <∞,

Ptf(x0) = f(x0) +

∫ t

0

ELf(xs)ds.

If f ∈ C2
K , then Lf is bounded, hence s 7→ ELf(xs) is continuous,

lim
t→0

Ptf(x0)− f(x0)

t
= Lf(x0).

An easy way to conclude that f is in the domain of the generator is to see f(Xt) −∫ t
0
Lf(xr)dr is a martingale, and use Theorem 3.4.2.

See [Li94a] for a a study of a generalised notion, the C∗-property, which also connect
to a PDE problem.

4.7 Exercises
Exercise 4.7.1. Let A ∈ C∞b (Rd;Rd) and Bt = (B1

t , . . . , B
m
t ) an Rm-valued standard

Brownian motion. Let
X ∈ C∞b (Rd;L(Rm,Rd)).

We may set Xk = X(x)(ek) where ek is an o.n.b. of Rm. Then the distribution of the
solutions to

dxt =
m∑
k=1

Xk(xt)dB
k
t + Z(xt)dt,

in independent of the choice of the basis.
Consider the SDE on Rd:

dxt =
m∑
k=1

Xk(xt)dB
k
t + Z(xt)dt, (4.7.1)

dvt =
m∑
k=1

(DXk)xt(vt)dB
k
t + (DA)xt(vt)dt. (4.7.2)
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(i) Show that for any initial condition (x0, v0) ∈ Rd (4.7.1)-(4.7.2) has a unique global
strong solution, and the system of equations is strongly Complete.

(ii) Show that for each t > 0, ∣∣∣∣Ft(x+ εv)− Ft(x)

ε
− vt

∣∣∣∣
converges in L2 as ε → 0 and (Ft(x), vt) solve the SDE (4.7.2) with the initial
condition (x, v).

The solution to (4.7.2) is linear in v. This will be called the derivative flow and
denoted by Jt(x, v).

(iii) Consider the system of equation (4.7.1) together with the following equation
dKt = (D2A)xt

(
Jt(x, v), Jt(x,w)

)
dt+ (DA)xt

(
Kt

)
dt

+ (D2σ)xt
)(
Jt(x, v), Jt(x,w)

)
dBt + (DA)xt

(
Kt

)
dBt,

K0 = 0.

Show that for each x0 ∈ Rd, v, w ∈ Rd, the L2 derivative of x 7→ Ft(x) at x0 in the
direction (v, w) exists, and its derivative if Kt.

Exercise 4.7.2. Suppose that Xi, A are in C2 with bounded derivatives. Let Ft(x) denote
its solution flow, then

E|Ft(x)− Fs(y)|2p . |x− y|2p + |s− t|p.

4.8 The differentiation formula
We return to SDEs

dxt =
m∑
k=1

Xk(xt) dB
k
t + b(xt) dt. (4.8.1)

We assume that the coefficients are locally Lipschitz continuous and that the equation
is well posed with a unique global solution Ft(x) for every initial condition. Recall the
solution correspond to the semigroup

Ptf(x) = E[f(Ft(x))].

We denote by L its infinitesimal generator:

L =
1

2

n∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑
l=1

bl(x)
∂

∂xl
.

Let vt denote its derivative flow, the solution to the linearised SDE with the initial value
v0, along xt = Ft(x0),

dvt =
m∑
k=1

(DXk)xt(vt)dB
k
t + (Db)xt(vt)dt. (4.8.2)

Under restrictions on the growth of |DXi| and |Db|, solution of the above equation exists
also for all time, see [Li94c, Thm 5.1+section 6]. Let (Ft(x), DxFt(v)) denote the so-
lution to the above system of equations with the initial value (x, v), then the semi-group
corresponds to it is:

Qtφ(x0, v0) = E
[
φ(Ft(x), DxFt(v))

]
.

If f is a differentiable function, we treat df as a real valued function on Rn × Rn, it is
linear in the second variable (so df is a differentiable 1-form).
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Lemma 4.8.1. Assume that Xi are C2, suppose that the SDE (4.8.1) is strongly complete,
and supx∈K E|TxFt|2 <∞ for any bounded set K. Then for any f ∈ BC1,

Qtdf(x0, v0) = (dPtf)x0(v0). (4.8.3)

See also [Li94b]. For the next theorem, we introduce some notation, We defineX(x) :
Rm → Rn as follows. Taking {ei} an o.n.b. of Rm,

X(x)(e) =
m∑
i=1

Xi(x)〈ei, e〉.

Suppose L is elliptic, then X(x) is a surjective, denote by Y (x) the right inverse of X(x).
The following result is taken from [Li92, EL94].

Theorem 4.8.2. [Differentiation / BEL Formula] Suppose that the SDE (4.8.1) is strongly
complete, supt6T E|TxFt|2 <∞ and the conclusion of the lemma. Suppose also that Y is
bounded. Suppose that Ptf is C1,2 for any f ∈ BC2. Then for any f ∈ Bb(Rn,R),

(dPtf)x0(v0) =
1

t
E
[
f(xt)

∫ t

0

〈Y (xs)vs, dBs〉
]
. (4.8.4)

In particular, the Markov process has the strong Feller property.

Proof. Let f ∈ BC2, Itô’s formula,

f(xt) = PTf(x0) +

∫ T

0

(
dPT−sf(xs)

)
X(xs)dBs,

By dPT−sf(xs)
)
X(xs)dBs we mean

∑m
i=1 dPT−sf(xs)

)
Xi(xs)dB

i
s. And

E
[
f(xt)

∫ T

0

〈Y (xs)vs, dBs〉
]

= E
[∫ T

0

dPT−sf(xs)(XdBs)

∫ t

0

〈Y (xs)vs, dBs〉
]]

= E
[∫ T

0

dPT−sf(xs)(XY )(xs)vsds

]
= E

[∫ T

0

QT−s(df(xs, vs)ds

]
= T QTdf(x0, v0).

Next let f ∈ BC, take fn → f uniformly. Then, E
[
fn(xt)

∫ T
0
〈Y (xs)vs, dBs〉

]
con-

verges locally uniformly as n → ∞. This means the required formula holds and PTf is
C1 and furthermore, for any T > 0,

|PTf(x)− PTf(y)| 6 C|x− y|

for any bounded continuous f , i.e. the total variational distance of the probability mea-
sures are bounded:

‖PT (x, ·)− PT (y, ·)‖TV 6 C|x− y|,

which means for any f ∈ Bb, PTf is in BC1. We now use the fact the formula holds for
bounded continuous functions to complete the proof.
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From the proof of the theorem we see that ‖PT (x, ·) − PT (y, ·)‖TV 6 C|x − y|. A
partial converse holds.

Remark 4.8.3. Suppose that Equation (4.8.4) holds fro any bounded measurable function,
and sups6t E|TFs(v)|2ds <∞ for any v, then

‖PT (x, ·)− PT (y, ·)‖TV 6 C|x− y|,

To see this it is sufficient to show for any f bounded measurable, |Ptf(x)−Ptf(y)| 6
C|f |∞|x− y|.

4.8.1 Application to uniqueness of invariant measures
It is relatively easy to show that a Markov process Xt has an invariant measure. If Pt is
Feller and there exists x0 with {P n(x0, · )}n≥0 tight (relatively compact), then

νN(f) ,
1

N

∫ N

0

f(Xs)ds

has an accumulation point, which can be shown with the Feller property to be invariant for
Tt. Recall that

∫
X Ttfdµ =

∫
fdπ for every t ≥ 0 and for every f bounded measurable.

It is much harder to prove uniqueness.
Let (Xt) be a Markov process with initial distribution an invariant measure π, we

denote by Pπ the measure it induces on the path space (i.e. the law of the process). Recall
from Theorem 4.3.7 that if Tt has the strong Feller property, we can distinguish ergodic
invariant probability measures by their supports. If X is an infinite dimensional space, the
strong Feller property often fails.

Definition 4.8.4. A function d : X ×X → R+ is a pseudo-metric if d(x, x) = 0 for every
x, and the triangle inequality holds.

A pseudo-metric may fail to separate points. The discrete metric ρ which assigns
ρ(x, y) = 1 if x 6= y is on the other side of the spectrum.

Definition 4.8.5. A family of pseudo-metric dn is said to be totally separating, if dn is an
increasing sequence and

lim
n→∞

dn(x, y) = 1

for any x 6= y.

We say d1 ≥ d2 if d1(x, y) ≥ d2(x, y) for any x, y ∈ X .

Example 4.8.6. On C0(Rn), we define for a sequence of numbers an > 0, increasing to
infinity,

dn(x, y) = 1 ∧
(
an sup

s∈[−n,n]

|xs − ys|
)
.

Then dn is totally separating.

Recall that if µ1 and µ2 are two positive finite measures of the same mass on a metric
space,

‖µ1 − µ2‖TV = inf
ν∈C(µ1,µ2)

ν
(
{(x, y) : x 6= y}

)
= inf

ν∈C(µ1,µ2)

∫
X

ρ(x, y)dν.

where C is the set of coupling of µ1 and µ2 and ρ the metric. We generalise this notion to
psudo-metrics.
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Definition 4.8.7. Let d be a pseudo-metric. Let µ1 and µ2 be two positive finite measures
with equal mass. Define,

‖µ1 − µ2‖d = inf
ν∈C(µ1,µ2)

∫
d(x, y)dν,

where C is the set of positive measures with marginals µ1 and µ2.

Remark 4.8.8. Let dn be a totally separating family of pseudo-metric, then

lim
n→∞

‖µ1 − µ2‖dn = ‖µ1 − µ2‖TV

for any two positive Borel measures of equal mass.

Definition 4.8.9. [HM06] A transition function is Asymptotically Strong Feller if for
every x ∈ X , there exist an increasing sequence of numbers tn > 0 and a sequence of
totally separating pseudo-metrics such that

lim
r→0

lim sup
n→∞

sup
y∈Bx(r)

∥∥∥Ptn(x, ·)− Ptn(y, ·)
∥∥∥
dn

= 0.

If the conclusion of Theorem 4.8.2, the BEL formula, holds, then the solutions of the
SDE has the strong Feller property, its generalisation in finite dimensional space is the fol-
lowing: The following results are convenient for studying Stochastic Partial Differential
Equations.

Theorem 4.8.10. [DPZ96] Let Tt be a Markov semigroup on the set of real valued
bounded measurable functions on a Hilbert space. It is strong Feller if there exists a
function C : R+ → R+ such that for any bounded function f : H → R with bounded first
order derivative,

|∇Ptf(x)| 6 C(|x|)(1 + ‖f‖∞).

Theorem 4.8.11. [HM06] Let Tt be a Markov semigroup on the set of real valued bounded
measurable functions on a Hilbert space. It is asymptotically strong Feller if there exists
a function C : R+ → R+, a sequence of increasing times tn and δn → 0 such that for any
bounded function f : H → R with bounded first order derivative,

|∇Ptnf(x)| 6 C(|x|)(1 + ‖f‖∞ + δn‖∇f‖∞).

Example 4.8.12. Consider

dxt = −xtdt+ dBt, ẏt = −yt.

Let f(x, y) = sign(y). Then Ptf(x, y) = E[f(yt)] = sign(yt). This is not a continuous
fucntion, the strong Feller property does not hold. However,

∇Ptf(x, y) = ∇[f(xt, yt)] = |E[df(xt,yt)(e
−t, e−t)]| 6 ‖df‖∞e−t → 0.

Hence the asymptotic strong Feller property holds. Of course this system trivially has a
unique invariant measure (they are decoupled, the elliptic diffusion has a unique invariant
measure, the y process has δ0 as invariant measure, any invariant measure is a coupling of
the two, hence the product measure.

Example 4.8.13. Consider

dxt = −(xt − xt)3dt+ dBt, ẏt = −yt.

The same conclusion holds, using Theorem 4.8.2 on the first eqution and the contraction
on the second.
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Example 4.8.14. The infinite dimensional Ornstein-Uhlenbeck process

u(x, t) =
∑
k∈Z

û(k, t) exp(ikx),

where x ∈ [−π, π], so we treat u(·, t) as a function in L2([−π, π]). Its complex Fourier
coefficients solve the SDEs

dû(k, t) = −(1 + |k|2)û(k, t)dt+ exp(−|k|3)dβk(t)

with βk independent standard complex Brownian motions. Then, it fails the strong Feller
property. Asymptotic strong Feller property holds.

We conclude the section with the following observation. If a Markov transition func-
tion P (x, dy) is continuous in the total variation norm, then the transition semigroup is
strong Feller. The former is stronger, because the convergence

lim
x→x0

sup
A
|Tt1A(x)− Tt1A(x0))| = lim

x→x0
sup
A
|P (x,A)− P (x0, A)| = 0,

is uniform in the set A.
There is a theorem which states that the composition of two strong Feller Markov

kernels is continuous in the total variation norm. See the notes [Hai09] and [Sei01]. By
the Chapman-Kolmogorov equations, a continuous time strong Feller Markov semigroup
is continuous in total variation norm as soon as the time is positive. There are counter
example of strong Feller Markov processes not continuous in the total variation norm.

4.9 Feynman-Kac Formla
Let V : Rn → R be a measurable function. Let us now consider the Cauchy problem for

∂

∂t
u = (

1

2
∆− V )u, u(0, x) = f(x). (4.9.1)

A function u : (0,∞) × Rn → R is said to be a classical solution if is in C1,2, i.e.
continuously differentiable in t and twice in x, the equation is satisfied pointwise, and
lim(t,x)→(0,x0) u(t, x) = f(x0) for any x0.

Theorem 4.9.1. Let V be continuous and bounded from below, f is bounded Borel mea-
surable, and u a classical solution of (4.9.1). Then

u(t, x) = E
[
f(x+Bt)

∫ t

0

e−V (x+Br)drdr

]
,

where Bt is a standard Brownian motion on Rn.

Proof. We observe that Kt ,
∫ t

0
e−V (x+Br)dr is differentiable and ∂

∂dt
Kt = −V (x +

Bt)Kt. Let T > 0 and t < T , then

∂

∂t
u(T − t, x) + (

1

2
∆ + V (T − t))u = 0.

Observe that the quadratic variation 〈U,K〉t vanishes. Hence by Itô’s formula,

Kt u(T − t, x+Bt) =u(T, x)−
∫ t

0

V (x+Bs)Ks u(T − s, xs)ds

+

∫ t

0

Ks

[
∂

∂s
+

1

2
∆

]
u(T − s, xs) ds+Mt

=u(T, x) +Mt.
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where Mt is a local martingale. Taking t→ T , by the continuity,

KT f(x+BT ) = u(T ) +Mt.

Since f is bounded, V is bounded from below, Mt is a martingale, we take expectation to
conclude.

Could we relax the condition on the potential function? Yes, indeed. The class of
function for which the Feyman-Kac semi-group can be defined extends to Kato-classes.

A non-negative function is in the Kato class if

lim
t→0

sup
x

E
∫ t

0

V (x+Bs)ds <∞.

Lemma 4.9.2. Suppose that V is bounded from below and in L1
loc. Show that fro any

t ≥ 0,

P
(∫ t

0

V (x+Bs)ds =∞
)

= 0

for almost surely x.

Proof. We can assume that V ≥ 0. Then for any R > 0,∫
Rd

∫ t

0

V (x+Bs)1{|x+Bs|6R}dsdx =

∫ t

0

∫
Rd
V (x+Bs)1{|x+Bs|6R}dxds <∞.

For almost surely all x, AR ,
∫ t

0
V (x + Bs)1{|x+Bs|6R}ds < ∞. Let us fix an ω, for

which x+Bs is continuous, (set of measure 1), and set

R = max
s6t
|x+Bs(ω)|.

Then, since sups6t |x+Bs| 6 R,∫ t

0

V (x+Bs)ds =

∫ t

0

V (x+Bs)1{|(x+Bs)|6R}ds <∞.

Lemma 4.9.3 (Khamsinski’s lemma). Let V ≥ 0 be a Borel measurable function. Sup-
pose that for some t > 0 and A < 1,

sup
x∈Rn

E
∫ t

0

V (x+Bs)ds = A,

then
sup
x∈Rn

E
[
e
∫ t
0 V (x+Bs)ds

]
6

1

1− A
.

Proof. Let

F (x,B) =

∫ t

0

V (x+Bs)ds.

Then,

sup
x

E

[
(
∫ t

0
V (x+Bs)ds)

n

n!

]
=

1

n!
sup
x

E
[∫ t

0

· · ·
∫ t

0

Πn
i=1V (x+Bsi)dsi

]
= sup

x
E
[∫ t

0

· · ·
∫ t

s1

· · ·
∫ t

sn−1

Πn
i=1V (x+Bsi)dsndsn−1 . . . ds1

]
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Let

Fk(−) =

∫ t

0

· · ·
∫ t

s1

· · ·
∫ t

sn−k−1

Πn
i=1V (x+Bsi)dsn−kdsn−1 . . . ds1(−)

Them

E[Fn] = EFn−1E

[∫ t

sn−k−1

V (x+Bsn)dsn|Fsn−1

]

6 sup
x

E

∣∣∣∣∣
∫ t

sn−k−1

V (x+Bsn)dsn

∣∣∣∣∣EFk−1 6 An.

Lemma 4.9.4. Let Xt be the canonical process on C(R+,Rn), Px the distribution of
the BM from x. Let f, g be Borel measurable such that

∫
|f |dPx < ∞ and A ,

supx
∫
|g|dPx <∞. Let f be Ft measurable, then

Ex|fg ◦ θt| 6 AEx|f |.

Proof.
Ex[|fg ◦ θt|] = ExEx[|fg ◦ θt| | Ft]

6 Ex

[
|f | Ex

[
|g ◦ θt| | Ft

]]
= Ex

[
|f |EXθt

[
|g| | Ft

]]
6 A Ex|f |.

Theorem 4.9.5. Suppose that V = V+ − V− where V+ ∈ L1
loc(Rn) and V− is in the Kato

class. Then the map

f 7→ E
[
f(x+Bt)

∫ t

0

e−V (x+Br)drdr

]
is a bounded operator on L∞, and a semi-group.

4.10 Essay Topics
(i) Given a diffusion process and its Markov operator (called diffusion operator), a

very important question is to determine its invariant measure and the convergence
to equilibrium. An important application is the ergodic theorem. There are some
literatures for you to explore. You can write an essay on aspects of this theory
or/and read digest one of the articles. The emphasize would be to give (as many as
possible) concrete examples and work out these examples in detail.

Ergodicity of Diffusion Processes. In the lecture notes, ‘Ergodic Properties of
Markov Processes by Luc Rey-Bellet’ https://people.math.umass.edu/
~lr7q/ps_files/EMP.pdf you found the foundational theory.

(a) Ergodicity of Markov processes for stochastic equations on Hilbert spaces
can be found in ‘On ergodicity of some Markov processes by By Tomasz
Komorowski, Szymon Peszat, and Tomasz Szarek.’
Introduction to Ergodic Rates for Markov Chains and Processes by Alexei Ku-
lik https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/
deliver/index/docId/7936/file/lpam02.pdf

(b) Ergodic properties of Markov Processes by Martin Hairer, http://www.
hairer.org/notes/Markov.pdf
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(c) Exponential ergodicity for Markov processes with random switching by Bertrand
Cloez, Bernoulli 21(1): 505-536 (February 2015). DOI: 10.3150/13-BEJ577

(d) Exponential and Uniform Ergodicity of Markov Processes by D. Down, S. P.
Meyn, R. L. Tweedie Ann. Probab. 23(4): 1671-1691 (October, 1995). DOI:
10.1214/aop/1176987798

(e) A quantitative ergodic theorem for diffusion processes satisfying Hörman-
der’s conditions can be found in Perturbation of Conservation Laws and Aver-
aging on Manifolds by Xue-Mei Li https://arxiv.org/pdf/1705.
08857.pdf

(f) Rate of convergence for ergodic continuous Markov processes: Lyapunov ver-
sus Poincaré Dominique Bakry, Patrick Cattiaux a,c„ Arnaud Guillin https:
//www.sciencedirect.com/science/article/pii/S0022123607004259?
via%3Dihub

(ii) Feynman-Kac formula is a useful tool, it started with Kac, used in mathematical
physics called Feynman path integration. A good book in Path Integration by Si-
mon. You can read it also in a more modern book ‘Feynman-Kac-Type Formulae
and Gibbs Measures’ by Lorinczi , Jzsef , Hiroshima, Fumio, and Betz. The fol-
lowing papers are for stochastic processes on manifolds. You can try to work out
examples for Rn with a general diffusion operator. The derivatives of solutions of
Feynman-Kac formula are interesting too. You can see the following articles. First
order Feynman-Kac formula by Xue-Mei Li and James Thompson. Hessian formu-
las and estimates for parabolic Schrödinger operators by Xue-Mei Li, in the Journal
of Stochastic Analysis, Vol:2, ISSN:2689-6931, https://digitalcommons.
lsu.edu/cgi/viewcontent.cgi?article=1080&context=josa

(iii) Stochastic averaging and limit theorems are popular topics. There are multiple
approaches. One article is the following. You can read about them and write up
your findings.

Averaging for martingale problems and stochastic approximation by T. Kurtz https:
//www.researchgate.net/publication/226505555_Averaging_for_
martingale_problems_and_stochastic_approximation

(iv) Consider a perturbation to the two dimensional Hamiltonian system q̇ = p, ṗ = −q
is studied, it corresponds to the Hamiltonian function H(p, q) = 1

2
(p2 + q2) with

skew gradient J∇H = (∂H
∂p
,−∂H

∂q
) where J =

(
0 1
−1 0

)
gives the standard sym-

plectic structure on R2n. Suppose M is a 2n- dimensional manifold with a closed
non-degenerate two form ω (it belongs to ∧2T ∗M , it is dq ∧ dp on R2) Then for ev-
ery function H : M → R with corresponding differential dH , there corresponds to
a vector field XH with ω(XH(x), v)) = dH(v) for every x ∈ M and every tangent
vector v ∈ TxM . This is called the symplectic vector field corresponds to H .

In ‘An averaging principle for a completely integrable stochastic Hamiltonian sys-
tem’ by Xue-Mei Li, a perturbation model is given of the form:

dxt =
n∑
i=1

Xi(xt)dB
i
t + εK(xt)dt

Where {Hi : 1 6 i 6 n} are Hamiltonian functions with the vector fieldsXi = XHi

pairwise commute. Could you work out some examples? For example the structure
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in the following paper can be connected to the previously mentioned paper. Toward
the Fourier law for a weakly interacting anharmonic crystal by Carlangelo Liverani
and Stefano Olla. in J. Amer. Math. Soc., 25(2):555-583, 2012.

If M = R2n, with a typical point written as x = (x1, . . . x2n), we identify tangent
spaces with R2n and the cotangent spaces T ∗xM with the dual spaces. Recall df
is a differential, so df(v) = 〈∇f(x), v〉 for x ∈ TxR2n = R2n. So at each x,
df ∈ (R2n)∗ is a real valued linear map. A differential two form is an antisymmetric
map for each x fixed, a typical one if dxi ∧ dxj = 1

2
(dxi ⊗ dxj − dxj ⊗ dxi).

A differential 3-form is an anti-symmetric mulit-linear the three fold of R2n, e.g.
|x|2dx1 ∧ dx2 ∧ dx3. Note dxi ∧ dxj ∧ dxk = −dxj ∧ dxi ∧ dxk.

A differential two-form is of the following form: for each x, we have a linear map
ωx : R2n ⊗ R2n → R which is anti-symmetric. The subscript x is often omitted.
Identify R2n with its tangent spaces, we write it as follows

ω =
∑
i,j

fijdx
i ∧ dxj

with anti-symmetric property, where fi,j are real valued functions. Recall

dxi ∧ dxj(u, v) =
1

2
dxi(u)dxj(v)− 1

2
dxi(v)dxj(u),

in particular dω(u, v) = 1
2

∑2n
i,j=1 fij(x)(uivj − viui). You want ω to have to prop-

erty dω(u, v) = 0 for all v implies u = 0 (non-degenerate) and closed (dω = 0)
where

dω =
∑
i,j,k

∂fi
∂xk

dxk ∧ dxi ∧ dxj.

This imposes constraints on the functions fi,j . Recall that dω is anti-symmetric,
whenever two coordinates are exchanged, the sign is exchanged, this imposes con-
straints on the functions fi,j as well.. Writing ei = ∂

∂xi
, You can then solve for

ω(XH , ·) = dH =
∑
i

∂H

∂xi
dxi

as follows. Write XH =
∑
uiei, you want to solve

ω(
∑

uiei,
∑

viei) = 〈∇H, v〉.

You can also try to work out examples on compact surfaces.

(v) Markov processes in functions Spaces. Solutions of Stochastic Differential Equa-
tion of non-Markovian type. The article : Stochastic Delay Equations by Michael
Scheutzow: http://page.math.tu-berlin.de/~scheutzow/Lecture_
Notes_SDDEs.pdf studies solution on function space, existence of invariant
measure, and convergence to invariant measure problem in this setting.

(vi) Another non-Markov setting turned into Markov setting in function space is as be-
low, which we discussed briefly in the beginning of the lectures. Ergodicity of
stochastic differential equations driven by fractional Brownian motion by Martin
Hairer: https://www.jstor.org/stable/3481754
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(vii) It is also possible to look at the strong completeness property, which implies the
existence of a perfect cocycle. A theorem on this is given in [Li94c], section 6 of
which is devoted to a treatment on R6. The results there were new for Rn at the
time, it may still be possible to construct new examples from the main theorem
there. Note the treatment there is very much different from the Lipschitz case.
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